Determining the average inbreeding coefficient in two ways using the example of the Gyimesi Racka

Authors

  • Edina Kárpáti Állattenyésztési, Takarmányozástani és Laborállat-tudományi Intézet, Állatorvostudományi Egyetem, Budapest, István utca 2, 1078 Budapest, Magyarország, Állattudományi Tanszék, Albert Kázmér Mosonmagyaróvári Kar, Széchenyi István Egyetem, Vár tér 2, 9200 Mosonmagyaróvár, Magyarország
  • András Gáspárdy Állattenyésztési, Takarmányozástani és Laborállat-tudományi Intézet, Állatorvostudományi Egyetem, Budapest, István utca 2, 1078 Budapest, Magyarország
  • László Sáfár Magyar Juh- és Kecsketenyésztők Szövetsége, Lőportár u. 16, 1134 Budapest, Magyarország
  • László Gulyás Állattudományi Tanszék, Albert Kázmér Mosonmagyaróvári Kar, Széchenyi István Egyetem, Vár tér 2, 9200 Mosonmagyaróvár, Magyarország

DOI:

https://doi.org/10.17205/SZIE.AWETH.2023.1.047

Keywords:

coefficient of inbreeding, planning mating, descendance by maternal generations

Abstract

The Gyimesi Racka is one of the Zackel-group variants bred in Transylvania. In the early 1990s it was re-introduced into Hungary (only in small numbers), then in the following years the national population of the breed increased due to some major imports of breeding animals. The stud book herd of the Gyimesi Racka ewes consists of almost 1000 individuals today.

The authors estimated individual Wright’s inbreeding coefficient (COI) using Pedigree Viewer software based on the whole pedigree data (from 2005 to 2020). Mean inbreeding coefficients were also determined at baseline and transformed values.

The average COI of the total herd book population (n=16947) was 1.99%, compared to the higher value of the subpopulation of inbred individuals (n=3828, 8.81%). As the number of maternal generations increased, the COI increased too significantly (P<0.001) in the total herd book population; in the eighth generation it was already 10.72%. On the other hand, in the subset of inbred individuals, the COI was more stagnant in the range of 8% and 10%, even though ANOVA confirms significant differences between generations. The corrected weighted mean and geometric mean obtained by log transformation took lower values (1.43% and 6.30%, respectively). We believe that the latter values are not only more favourable from the genetic diversity point of view, but also more reliable to characterize the mean of a group of animals, because they were obtained from a database that is closer to the normal distribution.

However, based on the COI values calculated via both ways, the homozygosity status of today's Gyimesi Racka stock is threateningly high, which draws attention to careful mating plan in the future.

Author Biography

  • Edina Kárpáti, Állattenyésztési, Takarmányozástani és Laborállat-tudományi Intézet, Állatorvostudományi Egyetem, Budapest, István utca 2, 1078 Budapest, Magyarország, Állattudományi Tanszék, Albert Kázmér Mosonmagyaróvári Kar, Széchenyi István Egyetem, Vár tér 2, 9200 Mosonmagyaróvár, Magyarország

    corresponding author
    edina.karpati@gmail.com

References

Ferenčaković M., Hamzić E., Gredler B., Solberg T. R., Klemetsdal G., Curik I., Sölkner J., (2013): Estimates of autozygosity derived from runs of homozygosity: empirical evidence from selected cattle populations. J Anim Breed Genet., 130. 4. 286–293. https://doi.org/10.1111/jbg.12012

Frölich K., Kopte S. (2014): Alte Nutztierrassen. Selten und Schützenswert, Cadmos, 98. 12–14; 28–29; 38.

Gáspárdy A. (2011): Horn conformation by the Zackels. Journal d’Ethnozootechnie de Roumanie, 1. 1. 38–58.

Kinghorn B. P., Kinghorn A. J. (2010): Pedigree Viewer 6.5. University of New England: Armidale, Australia.

Koppány G. (Szerk.) (2002). Megőrzött ízek. Juhételek. Timp© Kft. Budapest.18–19.

Kovács E., Tempfli K., Shannon A., Zenke P., Maróti-Agóts Á., Sáfár L., Bali Papp Á., Gáspárdy A. (2019): STR diversity of a historical sheep breed bottlenecked, the Cikta. The Journal of Animal and Plant Sciences, 29. 1. 41–47.

Kusza Sz., Zakar E., Budai Cs., Cziszter L. T., Ioan Padeanu J., Gavojdian D. (2015): Mitochondrial DNA variability in Gyimesi Racka and Turcana sheep breeds. Acta Biochimica Polonica, 62. 2. 273–280. http://dx.doi.org/10.18388/abp.2015_978

Maijala K. (1970): Need and Methods of Gene Conservation in Animal Breeding, Ann. Genet. Sel. Anim., 2. 4. 403–415. https://doi.org/10.1186/1297-9686-2-4-403

Sambraus H. H. (2016): Was ist eine alte und gefährdete Rasse? “Innovative approaches in biotechnology and genetic engineering applied in rare breed preservation” 27th Annual Meeting of DAGENE, from 22nd to 24th of April 2016, Hilgertshausen-Tandern, Germany, Danubian Animal Genetic Resources, 1, 7–11.

TIBCO Software Inc. (2020). Data Science Workbench, version 14. http://tibco.com

Zsolnai A., Egerszegi I., Rózsa L., Anton I. (2021): Genetic status of lowland-type Racka sheep colour variants. Animal, 15. 2. 100080. https://doi.org/10.1016/j.animal.2020.100080

Published

2023-05-30

Issue

Section

Cikk szövege

How to Cite

Determining the average inbreeding coefficient in two ways using the example of the Gyimesi Racka. (2023). Animal Welfare, Ethology and Housing Systems (AWETH), 19(1), 47-54. https://doi.org/10.17205/SZIE.AWETH.2023.1.047

Most read articles by the same author(s)