Closed-chest occlusion of the left anterior descending artery in swine infarction model
Review
DOI:
https://doi.org/10.31914/aak.3423Keywords:
myocardial infarction in pigs, translational research, coronary occlusion, large animal modelingAbstract
Pigs have played a significant role in biological and medical research for many years. In the case of non-rodent models, pigs are the primary choices as experimental animals in the cardiovascular studies. Accumulating data indicate that the closed-chest coronary balloon-occlusion technique is one of the most successful method for creating ischemic heart failure (HF). However, consistent and thoroughly characterized large animal models of HF are a critical translational tool for drug development and toxicology. The knowledge of the different catheterization protocols is crucial to ensure a suitable animal model which can serve as a human-related preclinical validation process. Therefore it is essential to follow an optimized and standardized experimental protocol on a homogenous animal population, which help to obtain reliable and useful data for the translational large animal research programs.
References
Acharya D. (2020). Unloading and Reperfusion in Myocardial Infarction: A Matter of Time. Circula-tion. Heart failure, 13(1), e006718. DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.119.006718
Braunwald, E., & Kloner, R. A. (1985). Myocardial reperfusion: a double-edged sword?. The Journal of clinical investigation, 76(5), 1713–1719. DOI: https://doi.org/10.1172/JCI112160
Camacho, P., Fan, H., Liu, Z., & He, J. Q. (2016). Large Mammalian Animal Models of Heart Disease. Journal of cardiovascular development and disease, 3(4), 30. DOI: https://doi.org/10.3390/jcdd3040030
Freedman, L. P., Cockburn, I. M., & Simcoe, T. S. (2015). The Economics of Reproducibility in Preclini-cal Research. PLoS biology, 13(6), e1002165. DOI: https://doi.org/10.1371/journal.pbio.1002165
Garcia-Dorado, D., Théroux, P., Elizaga, J., Galiñanes, M., Solares, J., Riesgo, M., Gomez, M. J., Garcia-Dorado, A., & Fernandez Aviles, F. (1987). Myocardial reperfusion in the pig heart model: infarct size and duration of coronary occlusion. Cardiovascular research, 21(7), 537–544. DOI: https://doi.org/10.1093/cvr/21.7.537
Ghugre, N. R., Pop, M., Barry, J., Connelly, K. A., & Wright, G. A. (2013). Quantitative magnetic reso-nance imaging can distinguish remodeling mechanisms after acute myocardial infarction based on the severity of ischemic insult. Magnetic resonance in medicine, 70(4), 1095–1105. DOI: https://doi.org/10.1002/mrm.24531
Halkos, M. E., Zhao, Z. Q., Kerendi, F., Wang, N. P., Jiang, R., Schmarkey, L. S., Martin, B. J., Quyyumi, A. A., Few, W. L., Kin, H., Guyton, R. A., & Vinten-Johansen, J. (2008). Intravenous infusion of mesen-chymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic research in cardiology, 103(6), 525–536. DOI: https://doi.org/10.1007/s00395-008-0741-0
Hausenloy, D. J., & Yellon, D. M. (2013). Myocardial ischemia-reperfusion injury: a neglected thera-peutic target. The Journal of clinical investigation, 123(1), 92–100. DOI: https://doi.org/10.1172/JCI62874
Hausenloy D. J., Yellon D. M. (2016). Ischaemic conditioning and reperfusion injury. Nat. Rev. Cardiol. 13 193–209. DOI: https://doi.org/10.1038/nrcardio.2016.5
Koudstaal, S., Jansen of Lorkeers, S., Gho, J. M., van Hout, G. P., Jansen, M. S., Gründeman, P. F., Paster-kamp, G., Doevendans, P. A., Hoefer, I. E., & Chamuleau, S. A. (2014). Myocardial infarction and functional outcome assessment in pigs. Journal of visualized experiments : JoVE, (86), 51269. DOI: https://doi.org/10.3791/51269
Krombach, G. A., Kinzel, S., Mahnken, A. H., Günther, R. W., & Buecker, A. (2005). Minimally invasive close-chest method for creating reperfused or occlusive myocardial infarction in swine. Inves-tigative radiology, 40(1), 14–18.
Lim, M., Wang, W., Liang, L., Han, Z. B., Li, Z., Geng, J., Zhao, M., Jia, H., Feng, J., Wei, Z., Song, B., Zhang, J., Li, J., Liu, T., Wang, F., Li, T., Li, J., Fang, Y., Gao, J., & Han, Z. (2018). Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute myocardial infarction. Stem cell re-search & therapy, 9(1), 129. DOI: https://doi.org/10.1186/s13287-018-0888-z
Lubberding, A. F., Sattler, S. M., Flethøj, M., Tfelt-Hansen, J., & Jespersen, T. (2020). Comparison of hemodynamics, cardiac electrophysiology, and ventricular arrhythmia in an open- and a closed-chest porcine model of acute myocardial infarction. American journal of physiology. Heart and circulatory physiology, 318(2), H391–H400. DOI: https://doi.org/10.1152/ajpheart.00406.2019
Munz, M. R., Faria, M. A., Monteiro, J. R., Aguas, A. P., & Amorim, M. J. (2011). Surgical porcine myocar-dial infarction model through permanent coronary occlusion. Comparative medicine, 61(5), 445–452.
Schuleri, K. H., Boyle, A. J., Centola, M., Amado, L. C., Evers, R., Zimmet, J. M., Evers, K. S., Ostbye, K. M., Scorpio, D. G., Hare, J. M., & Lardo, A. C. (2008). The adult Göttingen minipig as a model for chron-ic heart failure after myocardial infarction: focus on cardiovascular imaging and regenerative therapies. Comparative medicine, 58(6), 568–579.
Shin, H. S., Shin, H. H., & Shudo, Y. (2021). Current Status and Limitations of Myocardial Infarction Large Animal Models in Cardiovascular Translational Research. Frontiers in bioengineering and biotechnology, 9, 673683. DOI: https://doi.org/10.3389/fbioe.2021.673683
Silvis, M.J.M., van Hout, G.P.J., Fiolet, A.T.L., Dekker, M., Bosch, L., van Nieuwburg, M.M.J., Visser, J., Jansen, M.S., Timmers, L.,de Kleijn, D.P.V. (2021). Experimental parameters and infarct size in closed chest pig LAD ischemia reperfusion models; lessons learned. BMC Cardiovasc Disord (2021) 21, 171. DOI: https://doi.org/10.1186/s12872-021-01995-7
Spannbauer, A., Traxler, D., Zlabinger, K., Gugerell, A., Winkler, J., Mester-Tonczar, J., Lukovic, D., Müller, C., Riesenhuber, M., Pavo, N., & Gyöngyösi, M. (2019). Large Animal Models of Heart Fail-ure With Reduced Ejection Fraction (HFrEF). Frontiers in cardiovascular medicine, 6, 117. DOI: https://doi.org/10.3389/fcvm.2019.00117
Suzuki, Y., Lyons, J. K., Yeung, A. C., & Ikeno, F. (2008). In vivo porcine model of reperfused myocardial infarction: in situ double staining to measure precise infarct area/area at risk. Catheterization and cardiovascular interventions: official journal of the Society for Cardiac Angiography & In-terventions, 71(1), 100–107. DOI: https://doi.org/10.1002/ccd.21329
Thomas, R., Thai, K., Barry, J., Wright, G. A., Strauss, B. H., & Ghugre, N. R. (2021). T2-based area-at-risk and edema are influenced by ischemic duration in acute myocardial infarction. Magnetic resonance imaging, 79, 1–4. DOI: https://doi.org/10.1016/j.mri.2021.02.011
Tohyama, S., & Kobayashi, E. (2019). Age-Appropriateness of Porcine Models Used for Cell Trans-plantation. Cell transplantation, 28(2), 224–228. DOI: https://doi.org/10.1177/0963689718817477
Yellon, D. M., & Hausenloy, D. J. (2007). Myocardial reperfusion injury. The New England journal of medicine, 357(11), 1121–1135. DOI: https://doi.org/10.1056/NEJMra071667
Virani, S. S., Alonso, A., Aparicio, H. J., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Cheng, S., Delling, F. N., Elkind, M., Evenson, K. R., Ferguson, J. F., Gupta, D. K., Khan, S. S., Kissela, B. M., Knutson, K. L., Lee, C. D., Lewis, T. T., Liu, J., (2021). American Heart As-sociation Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation, 143(8), e254–e743. DOI: https://doi.org/10.1161/CIR.0000000000000950
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Kőrösi Dénes, Vorobcsuk András, Fajtai Dániel, Tátrai Ottó, Bodor Emőke, Garamvölgyi Rita
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.