The effect of the extrusion temperature and the residence time on the D-amino acid content of corn extrudates
Keywords:
racemization, D-amino acid, ground corn, extrusion temperature, residence timeAbstract
Racemization of peptide-bonded amino acids results in a decrease of protein digestibility, and long-term negative health consequences due to the intake of dietary Damino acids cannot be excluded. Temperature and time dependence of racemization has been investigated in strong alkaline solutions mostly in cases of clear proteins. The aim of the research was to determine the amount of D-enantiomers and the level of racemization of amino acids with the highest rate of racemization and occurring in the largest quantities in corn grain extrudates treated with different heat effects (temperature and residence time combinations). Extrusion trials below 144 °C with residence times of 28–72 s did not induce significant (P<0.05) racemization. Treatment at 175 ºC and at 200 ºC induced significant racemization of aspartic acid (2.4% and 6.1%, respectively). In case of serine and glutamic acid the ratio of D-enantiomers increased significantly due to the treatments at 200 ºC (0.75% and 0.69%, respectively). The L-aspartic acid and L-lyisine content of the products extruded at 200ºC were significantly lower than in control and in products produced at lower temperatures. The primary cause of the loss of L-aspartic acid was D-aspartic acid formation. In contrast, racemization of lysine played a minor role in the decrease of L-lysine content.
References
Chae, B. J., Kim, Y. G., Han, I. K., Kim, J. H., Cho, W. T., Hancock, J. D., Kim, I. H. (2000). Effect of particle size and extrusion of maize and sorghum on ileal digestibility and growth performance in pigs weaned at 14 and 21 days of age. J. of An. and Feed Sci., 9(4), 665–679. https://doi.org/10.22358/jafs/68116/2000
Cho, W. T., Kim, Y. G., Kim, J. D., Chae, B. J., Han, I. K. (2001). Effects of feeding extruded corn and wheat grain on growth performance and digestibility of amino acids in early-weaned pigs. Asian-Australian J. of An. Sci., 14(2), 224–230. https://doi.org/10.5713/ajas.2001.224
Csapó, J., Csapó-Kiss, Zs., Einarsson, S., Folestad, S., Tivesten, A. (1995). Methods for determination of D-amino acid content of foods and feeds. Acta Alimentaria 24. 125–126.
Csapó, J., Csapó-Kiss, Zs., Wágner, L., Tálos, T., Martin, T. G., Némethy, S., Folestad, S. Tivesten, A. (1997). Hydrolysis of proteins performed at high temperatures and for short times with reduced racemization in order to determine the enantiomers of D- and L-amino acids. Anal. Chim. Acta., 339(1–2), 99–107. https://doi.org/10.1016/S0003-2670(96)00452-7
Csapó, J., Csapó-Kiss, Zs., Varga-Visi, É., Kametler, L., Pohn, G., Horn, P. (2000). The D-amino acid content of foodstuff subjected to various technological procedures. Agriculture, 6. 132–135. https://doi.org/10.1163/9789004683792_328
Csapó, J., Csapó-Kiss, Zs., Kametler, L., Varga-Visi, É., Pohn, G., Horn, P. (2001). The D-amino acid content of foodstuff. Hungarian Agricultural Research, 10. 16–19.
Einarsson, S., Folestad S., Josefsson, B. (1987). Separation of amino acid enantiomers using precolumn derivatization with o-phtalaldehyde and 2,3,4,6,-tetra-O-acetil-1- thio-β-glucopyranoside. J. Liquid Chrom., 10(8–9), 1589–1601. https://doi.org/10.1080/01483918708066789
Friedman, M., Zahnley, J. C., Masters, P. M. (1981). Relationship between in vitro digestibility of casein and its content of lysinoalanine and D-amino acids. J. Food Sci., 46(1), 127–131. https://doi.org/10.1111/j.1365-2621.1981.tb14545.x
Friedman, M. (1999). Chemistry, nutrition, and microbiology of D-amino acids. J. Agric. Food Chem., 47(9), 3457–3479. https://doi.org/10.1021/jf990080u
Lásztity, R., Örsi, F. (1984). A nagyhőmérsékletű extrudálás élelmiszeripari alkalmazása. Élelmezési Ipar, 9. 321–324.
Liardon, R., Ledermann, S. (1986). Racemization kinetics of free and protein bound amino acids under moderate alkaline treatment. J. Agric. Food Chem., 34(3), 557–565. https://doi.org/10.1021/jf00069a047
Liardon, R., Friedman, M. (1987). Effect of peptide bond cleavage on the racemization of amino acid residues in proteins. J. Agric. Food Chem. 35(5), 661–667. https://doi.org/10.1021/jf00077a007
Masters, P. M., Friedman, M. (1980). Amino acid racemization in alkali treated food proteins-chemistry, toxicology and nutritional consequences. In Chemical deterioration of proteins; Whittaker, J. R., Fujimaki, M. Eds. Am. Chem. Soc. Washington D. C. 165–194. https://doi.org/10.1021/bk-1980-0123.ch008
Ormainé Cserhalmi, Zs., Horváth, E., Petres, J., Czukor, B. (1987). Extrudálás az élelmiszeriparban I. Élelmezési Ipar, 10. 361–365.
Ormainé Cserhalmi, Zs., Horváth, E., Petres, J., Czukor, B. (1988). Extrudálás az élelmiszeriparban II. Élelmezési Ipar, 10. 366–370.
Ormainé Cserhalmi, Zs., Czukor, B. (1991). Az extrudálás hatása a kukorica és a rizs fehérjeemészthetőségére és aminosavtartalmára. Élelmezési Ipar, 5. 168–172.
Phillips, R. D., Chhinnan, M. S., Kennedy, M. B. (1984). Effect of feed moisture and barrel temperature on physical properties on extruded cowpea meal. J. of Food Sci., 49(3), 916–921. https://doi.org/10.1111/j.1365-2621.1984.tb13241.x
De Vrese, M., Frik, R., Roos, N., Hagemeister, H. (2000). Protein-bound D-amino acids, and to a lesser extent lysinoalanine, decrease true ileal protein digestibility in minipigs as determined with 15N-labeling. J. of Nutr., 130(8), 2026–2031. https://doi.org/10.1093/jn/130.8.2026
Downloads
Published
Issue
Section
License
Copyright (c) 2004 Vargáné Visi Éva, Merész Péter, Terlakyné Balla Éva, Csapó János

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

