Effects of the breed and the live weight on the fatty acid and amino acid content, and the biological value of the proteins of the Hungarian Simmental’s and Holstein-Friesian’s meat

Authors

  • Gabriella Holló Szent István University, Faculty of Agricultural Sciences, H-2100 Gödöllő, Páter K. u. 1. , Szent István Egyetem, Mezőgazdaságtudományi Kar, 2100 Gödöllő, Páter K. u. 1.
  • János Csapó University of Kaposvár, Faculty of Animal Science, H-7400 Kaposvár, Guba S. u. 40. , Kaposvári Egyetem, Állattudományi Kar, 7400 Kaposvár, Guba S. u. 40.
  • János Tőzsér Szent István University, Faculty of Agricultural Sciences, H-2100 Gödöllő, Páter K. u. 1. , Szent István Egyetem, Mezőgazdaságtudományi Kar, 2100 Gödöllő, Páter K. u. 1.
  • István Holló University of Kaposvár, Faculty of Animal Science, H-7400 Kaposvár, Guba S. u. 40. , Kaposvári Egyetem, Állattudományi Kar, 7400 Kaposvár, Guba S. u. 40.
  • Endre Szűcs Szent István University, Faculty of Agricultural Sciences, H-2100 Gödöllő, Páter K. u. 1. , Szent István Egyetem, Mezőgazdaságtudományi Kar, 2100 Gödöllő, Páter K. u. 1.

Keywords:

Meat composition, Hungarian Simmental, Holstein-Friesian amino acid composition, biological value

Abstract

21 Hungarian Simmental and 17 Holstein-Friesian cattle’s meat has been analysed in regard to the fatty acid and amino acid content, and also to the biological value of the protein. It was established that the proportion of the saturated, and the mono- and polyunsaturated fatty acids compared to each other is not significantly influenced by the breed and the live weight. By the increase of the live weight, examining both breed, the ratio of the monounsaturated fatty acids has increased in the meat. The amino acid content of the meat was not significantly influenced by the breed, and the live weight did not produce any demonstrated effects, either. The essential amino acid content and the biological value of the meat of the Hungarian Simmental are practically the same as of the Holstein-Friesian.

References

Bruce, A. (1994). Opening lecture. 45th Annual meeting of the European Association for Animal Production, Edinburgh, Scotland, September 2–10.

Csapó, J., Húsvéth, F., Csapó-Kiss, Zs., Horn, P., Házas, Z., Varga-Visi, É., Bőcs, K. (1999). Különböző fajtájú sertések zsírjának zsírsavösszetétele és koleszterintartalma. Acta Agraria Kaposváriensis, 3. 1–14.

Csapó, J., Csapó-Kiss, Zs., Tóth-Pósfai, I. (1986). Optimization of hydrolyisis at determination of amino acid content in food and feed products. Acta Alimentaria, 1. 3–21.

Csapó, J., Stefler, J., Martin, T. G., Makrai, S., Csapó-Kiss, Zs. (1995). Composition of mares’ colostrum of milk. Fat content, fatty acid composition and vitamin content. International Dairy Journal, 5(4), 393–402. https://doi.org/10.1016/0958-6946(94)00008-D

De Dechere, E. A., Korver, O. M., Verscherren, P. M., Katan, M. B. (1998). Health aspects of fish and n3 polyunsaturated fatty acids from plant and marine origin. European Journal of Clinical Nutrition, 52. 749–753. https://doi.org/10.1038/sj.ejcn.1600641

Ensminger, M. E., Ensminger, A. H., Conlande, J. E., Robson, J. R. K. (1995). The consice encyclopedia of food and nutrition. CRC Press LLC. https://doi.org/10.1201/9781420048186

Hegedűs, M., Kralovánszky, U. P., Mátrai, T. (1981). A takarmányfehérjék minősítése. Mezőgazdasági Kiadó, Budapest.

Hernández, P., Navarro, J. L., Toldrá, F. (1998). Lipid composition and lipolytic enzyme activities in porcine skeletal muscles with different oxidative pattern. Meat Science, 49(1), 1–10. https://doi.org/10.1016/S0309-1740(97)00077-6

Huerta-Leidenz, N. O., Cross, H. R., Savell, J. W., Lunt, D. K., Baker, J. F., Smith, S. B. (1996). Fatty acid composition of subcutaneous adipose tissue from male calvesat different stages of growth. Journal of Animal Science, 74(6), 1256–1264. https://doi.org/10.2527/1996.7461256x

Hugo, A., Osthoff, G., Jooste, P. J. (1999). Technological and chemical quality of pig adipose tissue: effect of backfat thickness. 45th ICOMST, 494–495.

Kazala, E. C., Lozeman, F. J., Mir, P. S., Laroche, A., Bailey, D. R. C., Weselake, R. J. (1999). Relationship of fatty acid composition to intramuscular fat content in beef from crossbred wagyn cattle. Journal of Animal Science, 77(7), 1717–1725. https://doi.org/10.2527/1999.7771717x

Keys, A., Anderson, J. T., Grande, F. (1957). Prediction of serumcholesterol responses of man to changes in fats in the diet. Lancet, 270 (7003), 959–966. https://doi.org/10.1016/S0140-6736(57)91998-0

Leseigneur, M. A., Candemer, G. (1991). Lipid composition of pork muscle as related to metabolic types of fibres. Meat Science, 29(3), 229–241. https://doi.org/10.1016/0309-1740(91)90052-R

Malau-Aduli, A. E. O., Siebert, B. D., Bottema, C. D. K., Pitchford, W. S. (1998). Breed comparison of the fatty acid composition of muscle phospholipids in jersey in limousin cattle. Journal of Animal Science, 76(3), 766–773. https://doi.org/10.2527/1998.763766x

Mandell, J. B., Buchanan-Smith, J. G., Campbell, C. P. (1998). Effects of forage vs grain feeding on carcass charecteristics, fatty acid composition, and beef quality in limousin cross steers when time on feed is controlled. Journal of Animal Science, 76(10), 2619–2630. https://doi.org/10.2527/1998.76102619x

Molnár, J., Molnár, A. (1981). Adatok a magyar tarka húsának aminosav összetételéhez. Élelmiszeripari F iskola Tudományos Közlemények, 9. 63–68.

Morup, K., Olesen, E. S. (1976). New method for prediction of protein value from essential amino acid pattern. Nutr. Rep. Int., 13. 355–365.

Nicastro, F. (1999). Aminoacid composition of longissimus thoracis from pigs of two genetic lines. 45th ICOMST, 414–415.

Okuyama, H., Ikemoto, A. (1999). Needs to modify the fatty acid composition of meats for human health. 45th ICOMST, 638–640.

Perry, D., Nicholls, P. J., Thompson, J. M. (1998). The effect of sire breed on the meeting point and fatty acid composition of subcutaneous fat in steers. J. of Animal Sci., 76(1), 87–95. https://doi.org/10.2527/1998.76187x

Piva, G., Guglielmetti, D. (1978). Meat amino acid composition of calves and steers slaughtered between 200 kg and 500 kg live weight. (pp. 177–185.) In: De Boer, H., Martin, J.: Pattern of growth and development in cattle. Hague – Boston – London. https://doi.org/10.1007/978-94-009-9756-1_11

Rule, D. C., Short, R. E., Grosz, M. D., MacNeil, M. D. (1999). Breed effects on cholesterol and fatty acids in longissimus muscle of hereford, limousin and pied montese F2 crossbred cattle az slanghtered. ASAS Annual Meeting, Indianapolis.

Sarudo, C., Sierra, I., Olleta, J. L., Martin, L., Campo, M. M., Santolaria, P., Wood, J. D., Nute, G. R. (1998). Influence of weaning on carcass quality, fatty acid and composition and meat quality in intensive lamb production systems. Animal Science, 66(1), 175–187. https://doi.org/10.1017/S1357729800008948

Shahidi, F. (1991). Prevention of lipid oxidation in muscle foods by nitrite & nitrate-free composition. In: Lipidoxidation in food, American Chemical Society, Washington, 161–182. https://doi.org/10.1021/bk-1992-0500.ch010

Szakály, S. (1995). A vaj a lipid-elmélet szorításában. Tejgazdaság, 55. 12–21.

Szűcs, E., Votisky, L., Csiba, A., Ács, I. (1985). Adatok a növendékbikák húsának aminosav összetételéhez és biológiai értékéhez. Húsipar, 24. 156–159.

Published

2000-07-15

How to Cite

Holló, G., Csapó, J., Tőzsér, J., Holló, I., & Szűcs, E. (2000). Effects of the breed and the live weight on the fatty acid and amino acid content, and the biological value of the proteins of the Hungarian Simmental’s and Holstein-Friesian’s meat. Acta Agraria Kaposváriensis, 4(2), 1-10. https://journal.uni-mate.hu/index.php/aak/article/view/1541

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>