Effect of fumonisin B1 mycotoxin on membrane fluidity of human and rabbit erythrocytes
Keywords:
fumonisin B1, membrane fluidity, erythrocytes, rabbit, pigAbstract
The authors examined the membrane damaging effect of fumonisin B1 (FB1). Fist, Hb-free ghosts of erythrocytes were isolated from healthy rabbits, incubated with purified FB1 (10, 50 and 100 μM) for 1 and 4 hours, labelled with DPH
(1,6-diphenyl-1,3,5-hexatriene), for determining the fluorescent anisotropy. Secondly, intact human red blood cells were incubated with purified FB1 (50 μM and 1 mM) for 7 and 24 hours, and extracellular (EC) K-ion concentration as a sensitive indicator of membrane damage was determined. Finally, rabbits were treated with 5 mg FB1/day/animal for 10 days. Ghost cells isolated from the treated animals were labelled with DPH, and the fluorescent anisotropy was determined. Increasing concentration of FB1 (10–50–100 μM) did not cause change in the fluorescent anisotropy of the ghosts isolated from healthy rabbits. After incubation of the intact human erythrocytes with
50 μM FB1 for 7 hrs, the EC Na+ and K+ concentrations were 147.5–149.2 mmol/L and 0.04–1.64 mmol/L, respectively. No significant difference attributable to the toxin was detected. Incubation with the same concentration of FB1 for 24 hrs resulted in a slight increase in the EC Na+ level (182.4–190.6 mmol/L), while the K+ level remained unchanged. Ghosts of the rabbits treated with FB1 showed similar anisotropy to those of untreated animals. It could be concluded that FB1 in the applied concentrations did not cause changes in the different physical-chemical parameters examined in human and rabbit erythrocytes’ membranes.
References
Blumberg, P. M., Ács, G., Ács, P. (1995): Protein kinase C in cell signaling: strategies for the development of selective inhibitors. Inflammation: mechanism and therapeutics. Birkhauser Verlag, Basel, 87–100.
Bouhet, S., Hourcade, E., Loiseau, N., Fikry, A., Martinez, S., Roselli, M., Galtier, P., Mengheri, E., Oswald, I.P. (2004): The mycotoxin FB1 alters the proliferation and the barrier function of porcine intestinal epithelial cells. Toxicol. Sci., 77(1), 165–171. https://doi.org/10.1093/toxsci/kfh006
Chesney, R. W., Gusowski, N., Zelikovi, I. (1986): Membrane fluidity and phospholipid composition in relation to sulfur amino acid intake in brush border membranes of rat kidney. Pediatr. Res., 20. 1305–1309. https://doi.org/10.1203/00006450-198612000-00024
Dodge, J. T., Mitchel, M., Hanahan, D. J. (1962): The preparation and chemical characteristics of Hb-free ghosts of human erythrocytes. J. Biol. Chem., 34. 119–130.
Dombrink-Kurtzman, M. A. (2003): Fumonisin and beauvericin induce apoptosis in turkey peripherial blood lymphocytes. Mycopathol., 156(4), 357–364. https://doi.org/10.1023/B:MYCO.0000003607.69016.d2
Donner, M., Stoltz, J. F. (1985): Comparative study on fluorescent probes distributed in human erythrocytes and platelets. Biorheology, 22(5), 385–397. https://doi.org/10.3233/BIR-1985-22503
Gaál T. szerk. (1999): Állatorvosi klinikai laboratóriumi diagnosztika. Sík Kiadó : Budapest, 1–490.
Gumprecht, L. A., Smith, G. W., Constable, P. C., Haschek, W. M. (2001): Species and organ specificity of fumonisin-induced endothelial alteration: potential role in porcine pulmonary edema. Toxicol., 160(1–3), 71–79. https://doi.org/10.1016/S0300-483X(00)00444-3
Kunszt G. (1998): Egyértékű kationok transzport mechanizmusai és azok fiziko-kémiai háttere emlős erythrocytákban. Rektori Pályamunka, PTE, Pécs, 1–36.
Minervini, F., Fornelli, F., Flynn, K. M. (2004): Toxicity and apoptosis induced by the mycotoxins nivalenol, deoxynivalenol and fumonisin BB1 in a human erythro- leukemia cell line. Toxicol. In Vitro, 18(1), 21–28. https://doi.org/10.1016/S0887-2333(03)00130-9
Miseta, A., Bogner, P., Szarka, Á., Kellermayer, M., Galambos, Cs., Wheatley, D. N., Cameron, I. L. (1995): Effect of non-lytic concentrations of brij series detergents on the metabolism-independent ion permeability properties of human erythrocytes. Biophys. J., 69(6), 2563–2568. https://doi.org/10.1016/S0006-3495(95)80127-X
Myburg, R. B., Dutton, M. F., Chuturgoon, A. A. (2002): Cytotoxicity of fumonisin B1, diethylnitrosamine and catechol on the SNO esophageal cancer cell line. Environ. Health Persp., 8. 813–815.
Nelson, G. J. ed. (1972): Lipid composition and metabolism of erythrocytes, blood lipids and lipoproteins: quantitation, composition and metabolism. John Wiley and Sons Inc., 318–348.
Qureshi, M. A., Hagler, W. M. (1992): Effect of fumonisin BB1 exposure on chicken macrophage functions in vitro. Poult. Sci., 71(1), 104–112. https://doi.org/10.3382/ps.0710104
Ramasamy, S., Wang, E., Henning, B., Merill, A. H. (1995): Fumonisin B1 alters sphingolipid metabolism and disrupts the barrier function of endothelial cells in culture. Toxicol. Appl. Pharmacol., 133(2), 343–348. https://doi.org/10.1006/taap.1995.1159
Riley, R. T., An, N. H., Showker, J. L., Yoo, H. S., Norred, W. P., Chamberlain, W. J., Wang, E., Merill, A. H., Motelin, G., Beasley, V. R., Haschek, W. M. (1993): Alteration of tissue and serum sphinganine to sphingosine ratio: An early biomarker of exposure to fumonisin-containing feeds in pigs. Toxicol. Appl. Pharmacol., 118(1), 105–112. https://doi.org/10.1006/taap.1993.1015
Riley, R. T., Wang E., Merill, A. H. Jr. (1994): Liquid chromatographic determination of sphinganine and sphingosine: Use of the free sphinganine-to-sphingosine ratio as a biomarker for consumption of fumonisins. J. Assoc. Off Anal. Chem. Int., 77(2), 533–540. https://doi.org/10.1093/jaoac/77.2.533
Schmelz, E. M., Dombrink-Kurtzman, M. A., Roberts, P. C., Kozutsumi, Y., Kawasaki, T., Merrill, A. H. Jr. (1998): Induction of apoptosis by fumonisin B1 in HT29 cells is mediated by the accumulation of endogenous free shingoid bases. Toxicol. Appl. Pharmacol., 148(2), 252–260. https://doi.org/10.1006/taap.1997.8356
Shier, W. T. (1992): Sphingosine analogues: an energing new class of toxins that includes the fumonisins. J. Toxical. Toxin Rev., 11(3), 241–257. https://doi.org/10.3109/15569549209115821
SPSS Inc 1996. SPSS for Windows, Version 7.5, Chicago, IL.
Tolleson, W. H., Melchior, W. B. Jr., Morris, S. M., McGarrity, L. J., Domon, O. E., Muskhelishvili, L., James, S. J., Howard, P. C. (1996): Apoptotic and anti-proliferative effects of fumonisin B1 in humany keratinocytes, fibroblasts, esophageal epithelial cells and hepatoma. Carcinogenesis, 17(2), 239–249. https://doi.org/10.1093/carcin/17.2.239
Wang, E., Ross, P. F., Wilson, T. M., Riley, R. T., Merill, A. H. Jr. (1992): Increases in serum sphingosine and sphinganine, and decreases in complex sphingolipids in ponies given feed containing fumonisins, mycotoxins produced by Fusarium moniliforme. J. Nutr., 122(8), 1706–1716. https://doi.org/10.1093/jn/122.8.1706
Wheatley, D. N., Miseta, A., Kellermayer, M., Galambos, Cs., Bogner, P., Berényi, E., Cameron, I. L. (1994): Cation distribution in mammalian red blood cells: interspecies and intraspecies relationships between cellural ATP, potassium, sodium and magnesium concentrations. Physiol. Chem. Phys. and Med., 26. 111–118.
Downloads
Published
Issue
Section
License
Copyright (c) 2009 Hafner Dóra, Bogner Péter, Rajli Veronika, Tornyos Gábor, Pósa Roland, Horn Péter, Kovács Melinda

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

