Closed-chest occlusion of the left anterior descending artery in swine infarction model



  • Kőrösi Dénes Magyar Agrár és Élettudományi Egyetem, 7400 Kaposvár, Guba Sándor str. 40., Levelezőszerző, e-mail:
  • Vorobcsuk András Kaposi Mór Oktató Kórház Kardiológiai Osztály, 7400 Kaposvár, Tallián Gy. utca 20-32.
  • Fajtai Dániel Medicopus Nonprofit Kft. 7400 Kaposvár, Guba Sándor utca 40.
  • Tátrai Ottó Kaposi Mór Oktató Kórház Kardiológiai Osztály, 7400 Kaposvár, Tallián Gy. utca 20-32.
  • Bodor Emőke Kaposi Mór Oktató Kórház Kardiológiai Osztály, 7400 Kaposvár, Tallián Gy. utca 20-32.
  • Garamvölgyi Rita Auvet Pharma Kft. 7400 Kaposvár, Dombóvári út 3.



myocardial infarction in pig, translational research, coronary occlusion, large animal model


Pigs have played a significant role in biological and medical research for many years. In the case of non-rodent models, pigs are the primary choices as experimental animals in the cardiovascular studies. Accumulating data indicate that the closed-chest coronary balloon-occlusion technique is one of the most successful method for creating ischemic heart failure (HF). However, consistent and thoroughly characterized large animal models of HF are a critical translational tool for drug development and toxicology. The knowledge of the different catheterization protocols is crucial to ensure a suitable animal model which can serve as a human-related preclinical validation process. Therefore it is essential to follow an optimized and standardized experimental protocol on a homogenous animal population, which help to obtain reliable and useful data for the translational large animal research programs.


Acharya D. (2020). Unloading and Reperfusion in Myocardial Infarction: A Matter of Time. Circula-tion. Heart failure, 13(1), e006718. DOI:

Braunwald, E., & Kloner, R. A. (1985). Myocardial reperfusion: a double-edged sword?. The Journal of clinical investigation, 76(5), 1713–1719. DOI:

Camacho, P., Fan, H., Liu, Z., & He, J. Q. (2016). Large Mammalian Animal Models of Heart Disease. Journal of cardiovascular development and disease, 3(4), 30. DOI:

Freedman, L. P., Cockburn, I. M., & Simcoe, T. S. (2015). The Economics of Reproducibility in Preclini-cal Research. PLoS biology, 13(6), e1002165. DOI:

Garcia-Dorado, D., Théroux, P., Elizaga, J., Galiñanes, M., Solares, J., Riesgo, M., Gomez, M. J., Garcia-Dorado, A., & Fernandez Aviles, F. (1987). Myocardial reperfusion in the pig heart model: infarct size and duration of coronary occlusion. Cardiovascular research, 21(7), 537–544. DOI:

Ghugre, N. R., Pop, M., Barry, J., Connelly, K. A., & Wright, G. A. (2013). Quantitative magnetic reso-nance imaging can distinguish remodeling mechanisms after acute myocardial infarction based on the severity of ischemic insult. Magnetic resonance in medicine, 70(4), 1095–1105. DOI:

Halkos, M. E., Zhao, Z. Q., Kerendi, F., Wang, N. P., Jiang, R., Schmarkey, L. S., Martin, B. J., Quyyumi, A. A., Few, W. L., Kin, H., Guyton, R. A., & Vinten-Johansen, J. (2008). Intravenous infusion of mesen-chymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic research in cardiology, 103(6), 525–536. DOI:

Hausenloy, D. J., & Yellon, D. M. (2013). Myocardial ischemia-reperfusion injury: a neglected thera-peutic target. The Journal of clinical investigation, 123(1), 92–100. DOI:

Hausenloy D. J., Yellon D. M. (2016). Ischaemic conditioning and reperfusion injury. Nat. Rev. Cardiol. 13 193–209. DOI:

Koudstaal, S., Jansen of Lorkeers, S., Gho, J. M., van Hout, G. P., Jansen, M. S., Gründeman, P. F., Paster-kamp, G., Doevendans, P. A., Hoefer, I. E., & Chamuleau, S. A. (2014). Myocardial infarction and functional outcome assessment in pigs. Journal of visualized experiments : JoVE, (86), 51269. DOI:

Krombach, G. A., Kinzel, S., Mahnken, A. H., Günther, R. W., & Buecker, A. (2005). Minimally invasive close-chest method for creating reperfused or occlusive myocardial infarction in swine. Inves-tigative radiology, 40(1), 14–18.

Lim, M., Wang, W., Liang, L., Han, Z. B., Li, Z., Geng, J., Zhao, M., Jia, H., Feng, J., Wei, Z., Song, B., Zhang, J., Li, J., Liu, T., Wang, F., Li, T., Li, J., Fang, Y., Gao, J., & Han, Z. (2018). Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute myocardial infarction. Stem cell re-search & therapy, 9(1), 129. DOI:

Lubberding, A. F., Sattler, S. M., Flethøj, M., Tfelt-Hansen, J., & Jespersen, T. (2020). Comparison of hemodynamics, cardiac electrophysiology, and ventricular arrhythmia in an open- and a closed-chest porcine model of acute myocardial infarction. American journal of physiology. Heart and circulatory physiology, 318(2), H391–H400. DOI:

Munz, M. R., Faria, M. A., Monteiro, J. R., Aguas, A. P., & Amorim, M. J. (2011). Surgical porcine myocar-dial infarction model through permanent coronary occlusion. Comparative medicine, 61(5), 445–452.

Schuleri, K. H., Boyle, A. J., Centola, M., Amado, L. C., Evers, R., Zimmet, J. M., Evers, K. S., Ostbye, K. M., Scorpio, D. G., Hare, J. M., & Lardo, A. C. (2008). The adult Göttingen minipig as a model for chron-ic heart failure after myocardial infarction: focus on cardiovascular imaging and regenerative therapies. Comparative medicine, 58(6), 568–579.

Shin, H. S., Shin, H. H., & Shudo, Y. (2021). Current Status and Limitations of Myocardial Infarction Large Animal Models in Cardiovascular Translational Research. Frontiers in bioengineering and biotechnology, 9, 673683. DOI:

Silvis, M.J.M., van Hout, G.P.J., Fiolet, A.T.L., Dekker, M., Bosch, L., van Nieuwburg, M.M.J., Visser, J., Jansen, M.S., Timmers, L.,de Kleijn, D.P.V. (2021). Experimental parameters and infarct size in closed chest pig LAD ischemia reperfusion models; lessons learned. BMC Cardiovasc Disord (2021) 21, 171. DOI:

Spannbauer, A., Traxler, D., Zlabinger, K., Gugerell, A., Winkler, J., Mester-Tonczar, J., Lukovic, D., Müller, C., Riesenhuber, M., Pavo, N., & Gyöngyösi, M. (2019). Large Animal Models of Heart Fail-ure With Reduced Ejection Fraction (HFrEF). Frontiers in cardiovascular medicine, 6, 117. DOI:

Suzuki, Y., Lyons, J. K., Yeung, A. C., & Ikeno, F. (2008). In vivo porcine model of reperfused myocardial infarction: in situ double staining to measure precise infarct area/area at risk. Catheterization and cardiovascular interventions: official journal of the Society for Cardiac Angiography & In-terventions, 71(1), 100–107. DOI:

Thomas, R., Thai, K., Barry, J., Wright, G. A., Strauss, B. H., & Ghugre, N. R. (2021). T2-based area-at-risk and edema are influenced by ischemic duration in acute myocardial infarction. Magnetic resonance imaging, 79, 1–4. DOI:

Tohyama, S., & Kobayashi, E. (2019). Age-Appropriateness of Porcine Models Used for Cell Trans-plantation. Cell transplantation, 28(2), 224–228. DOI:

Yellon, D. M., & Hausenloy, D. J. (2007). Myocardial reperfusion injury. The New England journal of medicine, 357(11), 1121–1135. DOI:

Virani, S. S., Alonso, A., Aparicio, H. J., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Cheng, S., Delling, F. N., Elkind, M., Evenson, K. R., Ferguson, J. F., Gupta, D. K., Khan, S. S., Kissela, B. M., Knutson, K. L., Lee, C. D., Lewis, T. T., Liu, J., (2021). American Heart As-sociation Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation, 143(8), e254–e743. DOI:




Folyóirat szám


Digitális képalkotás

Hogyan kell idézni

Closed-chest occlusion of the left anterior descending artery in swine infarction model: Review. (2024). ACTA AGRARIA KAPOSVARIENSIS, 27(1-2), 77-85.