Examination of Cadmium Uptake of Rye-Grass (Lolium Perenne) in Small Pot Experiment

Authors

  • Szilárd Szabó University of Debrecen, Dept. of Landscape Protection and Environmental Geography H-4010 Debrecen, Egyetem sq. 1.
  • László Hangyel Károly Róbert Collage, Fleischmann Rudolf Research Institute H-3356 Kompolt, Fleischmann str. 4.
  • Csaba Ágoston KVI-PLUSZ Ltd. H-1108 Budapest, Gyömrői str. 132–136.

DOI:

https://doi.org/10.56617/tl.5832

Keywords:

small pot, heavy metals, rye-grass, zinc, cadmium, plant uptake of heavy metals

Abstract

There is a relevant effect on soil properties on the plant uptake of heavy metals. The plants show different reaction on these kind of loadings. Some species extinct at a certain amount of heavy metal concentration and others just accumulate them without any kind of visible sign. In this paper a cadmium loading were carried out (5 mg/kg) with zinc addition (5 mg/kg) in a small pot experiment with rye-grass (Lolium perenne). Soil samples were taken from 4 sites from ploughland, grass land and forest land use types. It was compared the accumulation characteristics of the two metals and analysed their interconnection with the soil properties. It was detected that although, the difference between the zinc and cadmium load of the soils compared to the metal content of the soil is about 500 times (1/10 in the case of zinc and 50 times in the case of cadmium) the difference in the plant uptake is only 4–7 times. There is a close correlation between the zinc and cadmium uptake of plants and the cadmium concentration of soils plays an important role in it. Zinc shows positive correlation while cadmium exhibits negative correlation with organic matter. This can be explained by that zinc prefers fulvous acids when forming readily solvable chelats while cadmium bonds to more complexly polymerized humus material with longer carbon chain. Therefore zinc is solved even by root acids in contrast to cadmium that can be solved only by stronger acids. Besides organic colloids inorganic colloids i.e. clay fraction also showed close correlation.

Author Biographies

  • Szilárd Szabó, University of Debrecen, Dept. of Landscape Protection and Environmental Geography H-4010 Debrecen, Egyetem sq. 1.

    szszabo@delfin.unideb.hu

  • Csaba Ágoston, KVI-PLUSZ Ltd. H-1108 Budapest, Gyömrői str. 132–136.

    agostoncs@freemail.hu

References

A 10/2000. (VI.2.) KÖM-EÜM-FVM-KHVM együttes rendelet a felszín alatti víz és a földtani közeg minőségi védelméhez szükséges határértékekről. Magyar Közlöny 53: 3156–3167.

Alloway, B. J. 1995. Heavy metals in soils. Blackie Academic and Professional, London

Brekken, A., Steinnes, E. 2004. Seasonal concentration of cadmium and zinc in native pasture plants: consequences for grazing animals. Science of the Total Environment 326: 181–195. https://doi.org/10.1016/j.scitotenv.2003.11.023

Dahmani-Muller, H., van Oort, F., Gélie, B., Balabane, M. 2000. Strategies of heavy metal uptake by three plant spieces growing near a metal smelter. Environmental Pollution 109 (2): 231–238. https://doi.org/10.1016/S0269-7491(99)00262-6

Das, P., Samantaray, S., Rout, G. R. 1997. Studies on cadmium toxicity in plants: a review. Environmental Pollution 98: 29–36. https://doi.org/10.1016/S0269-7491(97)00110-3

Dudka, S., Piotrowska, M., Terelak, H. 1996. Transfer of cadmium, lead and zinc from industrially contaminated soil to crop plants: a field study. Environmental Pollution 94: 181–188. https://doi.org/10.1016/S0269-7491(96)00069-3

Ernst, W. H. O. 1996. Bioavailability of heavy metals and decontamination of soils by plants. Applied Geochemistry 11: 163–167. https://doi.org/10.1016/0883-2927(95)00040-2

Filep Gy. 1995. Talajvizsgálat. Mezőgazdaságtudományi Kar, DATE, Debrecen, 156 p.

Ge, Y., Murray, P., Hendershot, W. H. 2000. Trace metal speciation and bioavailability in urban soils. Environmental Pollution 107: 137–144. https://doi.org/10.1016/S0269-7491(99)00119-0

Hangyel L. 1996. Kistenyészedényes eljárás alkalmazása potenciálisan toxikus elemek felvehetőségének vizsgálatára. Növénytermelés 45: 561–567.

Hargitai L. 1983. A talajok környezetvédelmi kapacitásának meghatározása humuszállapotuk alapján. Agrokémia és Talajtan 32: 360–364.

Hodgson, J. F., Lindsay, W. L., Trierweiler, J. F. 1966. Micronutrient cation complexing in soil solution: II. Complexing of zinc and copper in displaced solution from calcareous soils. Soil Sci Soc Am Proc 30: 723–726. https://doi.org/10.2136/sssaj1966.03615995003000060020x

Jennrich, R. I. 1977. Stepwise regression, In Enslein, K. – Ralston, A. – Wilf, H. S. (Eds.): Statistical methods for digital computers. John Wiley and Sons, New York

Kabata-Pendias, A., Pendias, H. 1992. Trace Elements in Soils and Plants. CRC Press, Boca Raton FL, USA

Kádár, I. 2002. Effect of P, Zn and Cu fertilization on crops on a calcareous Chernozem soil. Agrokémia és Talajtan 51: 185–192. https://doi.org/10.1556/agrokem.51.2002.1-2.22

Kádár, I., Turán, T. 2002. P-Zn kölcsönhatás mészlepedékes csernozjom talajon kukorica monokultúrában. Agrokémia és Talajtan 51: 381–394. https://doi.org/10.1556/agrokem.51.2002.3-4.8

Kádár, I. 1991. A talajok és növények nehézfémtartalmának vizsgálata. Környezet- és természetvédelmi kutatások, KTM – MTA TAKI, Budapest, 104 p.

Liu,J. G., Liang, J. S., Li, K. Q., Zhang, Z. J., Yu, B. Y., Lu, X. L., Yang, J. C., Zhu, Q. S. 2003. Correlations between cadmium and mineral nutrients in adsorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere 52: 1467–1473. https://doi.org/10.1016/S0045-6535(03)00484-3

Livens, F. R. 1991. Chemical reactions of metals with humic materials. Environmental Pollution 70: 183–208. https://doi.org/10.1016/0269-7491(91)90009-L

Luo,Y. M., Christie, P., Baker, A. J. M. 2000. Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil. Chemosphere 41: 161–164. https://doi.org/10.1016/S0045-6535(99)00405-1

Ma, Q. Y., Lindsay, W. L. 1995. Estimation of Cd2+ and Ni2+ activities in soils by chelation. Geoderma 68: 123–133. https://doi.org/10.1016/0016-7061(95)00029-N

Martin, M. H., Coughtrey, P. J. 1982. Biological monitoring of heavy metal pollution. Applied Science Publishers, London-New York, 475 p. https://doi.org/10.1007/978-94-009-7352-7

Martinez, C. E., Motto, H. L. 2000. Solubility of lead and copper added to mineral soils. Environmental Pollution 107: 153–158. https://doi.org/10.1016/S0269-7491(99)00111-6

Mench, M. J. 1998. Cadmium availability to plants in relation to major long-term changes in agronomy systems. Agriculture, Ecosystems and Environment 67: 175–187. https://doi.org/10.1016/S0167-8809(97)00117-5

MSZ-08-0205-1978. A talaj fizikai és vízgazdálkodási tulajdonságainak vizsgálata, Mezőgazdasági és Élelmezésügyi Ágazati Szabvány, 39 p.

MSZ-08-0206/2-1978. A talaj egyes kémiai tulajdonságainak vizsgálata. Laboratóriumi vizsgálatok (pH-érték, szódában kifejezett fenolftalein lúgosság, vízben oldható összes só, hidrolitos és kicserélődési acidi- tás), Mezőgazdasági és Élelmezésügyi Ágazati Szabvány, 12 p.

MSZ-08-0210-1977. A talaj szerves szén tartalmának meghatározása, Mezőgazdasági és Élelmezésügyi Ágazati Szabvány, 6 p.

MSZ-08-1722/3-1989. Talajvizsgálatok. A talaj oldható toxikuselem- és nehézfémtartalmának meghatározása, Magyar Köztársaság Mezőgazdasági és Élelmezésügyi Ágazati Szabvány, 11 p.

Nan, Z., Li, J., Zhang, J., Cheng, G. 2002. Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions. The Science of the Total Environment 285: 187–195. https://doi.org/10.1016/S0048-9697(01)00919-6

Nicholson, F. A., Jones, C. K., Johnston, A. E. 1995. The significance of the retention atmospherically deposited cadmium on plant surfaces to the cadmium content of herbage. Chemosphere 31: 3043–3049. https://doi.org/10.1016/0045-6535(95)00165-5

O’Neill, P. 1993. Environmental chemistry, Chapman and Hall, 268 p.

Oudeh, M., Khan, M., Scullion, J. 2002. Plant accumulation of potentially toxic elements in sewage sludge as affected by soil organic matter level and mycorrhizal fungi. Environmental Pollution 116: 293–300. https://doi.org/10.1016/S0269-7491(01)00128-2

Ozturk, L., Karanlik, S., Ozkutlu, F., Cakmak, I., Kochian, L. V. 2003. Shoot biomass and zinc/cadmium uptake for hyperaccumulator and non-accumulator Thlaspi species in response to growth on a zinc- deficient calcareous soil. Plant Science 164 (6): 1095–1101. https://doi.org/10.1016/S0168-9452(03)00118-3

Pichtel, J., Kuroiwa, K., Sawyerr, H. T. 2000. Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites. Environmental Pollution 110 (1): 171–178. https://doi.org/10.1016/S0269-7491(99)00272-9

Pinto, A. P., Mota, A. M., de Varranes, A., Pinto, F. C. 2004. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Science of the Total Enviroment 326: 239–247. https://doi.org/10.1016/j.scitotenv.2004.01.004

Piotrowitz, S. R., Harvey, G. R., Boran, D. A., Weisel, C. P., Springer-Young, M. 1984. Cadmium, copper, and zinc interactions with marine humus as a function of ligand structure. Marine Chemistry 14: 333–346. https://doi.org/10.1016/0304-4203(84)90029-X

Sedlacek, J., Gjessing, E. T., Källquist, T. 1989. Influence of difference humus fractions on uptake of cadmium to alga Selenastrum capricornutum Printz. The Science of The Total Environment, 81–82: 711–718. https://doi.org/10.1016/0048-9697(89)90182-4

Simon, B., Wibbertmann, A., Wagner, D., Tomaska, L., Malcolm, H. 2001. Zinc. Environmental Health Criteria. 221. Inter-Organization Program for the Sound Management of Chemicals, WHO, Geneva

Simon L. 1999. A talaj szennyeződése szervetlen anyagokkal. In Simon L. (szerk.): Talajszennyeződés, talajtisztítás. Környezetügyi Műszaki Tájékoztató, 3–21.

Szabó Gy. 2000. Talajok és növények nehézfémtartalmának földrajzi vizsgálata egy bükkaljai mintaterületen. Studia Geographica 8, Debrecen, 144 p.

Wu, J., Norwell, W. A., Hopkins, J. G., Welch, R. W. 2002. Spatial variability of grain cadmium and soil characteristics in a durum wheat field. Soil Science Society of America Journal 66: 268–275. https://doi.org/10.2136/sssaj2002.2680

Yu, X., Cheng, J., Wong, M. H. 2005. Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biology and Biochemistry 37: 195–201. https://doi.org/10.1016/j.soilbio.2004.07.029

Zar, J. H. 1995. Biostatistical Analysis, Prentice-Hall International Edition, 718 p.

Zhu, Y. G., Smith, S. E., Smith, F. A. 2001. Zinc (Zn) – phosphorus (P) interactions in two cultivars of Spring wheat (Triticum aestivum L.) differing in P uptake efficiency. Annals of Botany 88: 941–945. https://doi.org/10.1006/anbo.2001.1522

Published

2007-12-28

Issue

Section

Tanulmányok, eredeti közlemények

How to Cite

Examination of Cadmium Uptake of Rye-Grass (Lolium Perenne) in Small Pot Experiment . (2007). JOURNAL OF LANDSCAPE ECOLOGY, 5(2), 271-286. https://doi.org/10.56617/tl.5832

Similar Articles

1-10 of 221

You may also start an advanced similarity search for this article.