Assessment of spatial and temporal changes in groundwater quality in a rural municipality using the CCME WQI water quality indicator

Authors

  • Dániel Balla Department of Data Science and Visualization, Faculty of Informatics, University of Debrecen, 4028 Debrecen, Kassai út 26, Hungary; e-mail: balla.daniel@inf.unideb.hu https://orcid.org/0000-0002-8051-1518
  • Emőke Kiss Department of Landscape Protection and Environmental Geography, University of Debrecen, 4032 Debrecen, Egyetem tér 1, Hungary; e-mail: kiss.emoke@science.unideb.hu https://orcid.org/0000-0003-4976-1241
  • Marianna Zichar Department of Data Science and Visualization, Faculty of Informatics, University of Debrecen, 4028 Debrecen, Kassai út 26, Hungary; e-mail: zichar.marianna@inf.unideb.hu
  • Tamás Mester Debreceni Egyetem, Természettudományi és Technológiai Kar, Tájvédelmi és Környezetföldrajzi Tanszék, 4032 Debrecen Egyetem tér 1.; e-mail: mester.tamas@science.unideb.hu https://orcid.org/0000-0001-7484-7560

DOI:

https://doi.org/10.56617/tl.4964

Keywords:

water quality index, Báránd, monitoring data, GIS

Abstract

Urban groundwater pollution is a global phenomenon requiring several environmental measures to reduce. In our study, we investigated the changes in water quality following the construction of a sewerage network in a municipal setting between 2013 and 2022 in a long-term monitoring framework by regularly sampling 40 municipal groundwater wells. The changes in groundwater levels before (2013) and after (2017, 2022) the construction of a sewerage network were assessed based on the groundwater levels measured during the sampling. In 2013, the groundwater level was very close to the surface (<3 m). The groundwater level was highest in the inner parts of the municipality, while the most profound water level was measured in the southern parts. The groundwater table measured in 2017 and 2022 showed a sharp decline due to the cessation of sewage discharge. The monitoring data were categorized into water quality categories using the CCME WQI water quality index, which revealed high levels of contamination in the year before the sewerage system was installed (2013), with most wells falling into the contaminated and highly contaminated categories. In the monitoring period following the sewerage, we found a significant positive change in most water chemistry parameters tested (pH, EC, NH4+, NO2-, NO3-, PO43-, COD, Na+).). Based on thematic point maps, a growing area shows good to fair water quality. This was confirmed by discriminant analysis, as it was possible to determine with 87.4% accuracy whether a given sample was from the pre or post-serage period based on the water chemistry parameters. However, eight years after sewerage, inorganic nitrogen forms and organic matter concentrations remain high, indicating that contaminants accumulated in the area are still present. Further long-term monitoring is needed to understand the dynamics of the clean-up processes.

References

A 2000/60/EC (2000) Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy. OJ L327, 22.12.2000.

Abdalla, F., Khalil, R. 2018: Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt. Journal of African Earth Sciences 141: 164–178. DOI: https://doi.org/10.1016/j.jafrearsci.2018.02.016

Adimalla, N., Qian, H., Tiwari, D. M. 2020: Groundwater chemistry, distribution and potential health risk appraisal of nitrate enriched groundwater: A case study from the semi-urban region of South India. Ecotoxicology and Environmental Safety 207: 111277. DOI: https://doi.org/10.1016/j.ecoenv.2020.111277

Backman, B., Bodiš, D., Lahermo, P., Rapant, S., Tarvainen, T. 1998: Application of a groundwater contamination index in Finland and Slovakia. Environmental Geology 36(1-2): 55–64. DOI: https://doi.org/10.1007/s002540050320

Baics T. 2013: Táji-és talajvízszint-változások Kunfehértó térségében. TÁJÖKÖLÓGIAI LAPOK| JOURNAL OF LANDSCAPE ECOLOGY, 11(1), 41-65. DOI: https://doi.org/10.56617/tl.3734

Balla D., Kiss E., Zichar M., Mester T. 2023: Vízminőségi monitoring adatok feldolgozása és publikálása WebGIS támogatással = Geoprocessing and publishing water quality monitoring data with WebGIS support. Geodesia es Kartografia 75(6): 4–9. https://doi.org/10.30921/GK.75.2023.6.1

Balla, D., Kiss, E., Zichar, M., Mester, T. 2023: Evaluation of groundwater quality in the rural environment using geostatistical analysis and WebGIS methods in a Hungarian settlement, Báránd. Environmental Science and Pollution Research.DOI: https://doi.org/10.1007/s11356-023-28627-1

Bouslah, S., Djemili, L., Houichi, L. 2017: Water quality index assessment of Koudiat Medouar Reservoir, northeast Algeria using weighted arithmetic index method. Journal of Water and Land Development 35(1): 221–228. DOI: https://doi.org/10.1515/jwld-2017-0087

Brown. R.M., McClelland N.I., Deininger R.A., Tozer R.G. 1970: A Water Quality Index: Do We Dare? Water Sewage Works 117(10): 339–343.

CPCB.2000: Water quality status of Yamuna River, Central Pollution Control Board, New Delhi, series AD-SORBS/32/1999–2000.

Cude, C. 2001: Oregon water quality index: A tool for evaluating water quality management effectiveness. Journal of American Water Resources Association 37: 125–137. DOI: https://doi.org/10.1111/j.1752-1688.2001.tb05480.x

Dinius, S. H. 1987: Design of an index of water quality. Water Resources Bulletin 23(5): 833– 843. DOI: https://doi.org/10.1111/j.1752-1688.1987.tb02959.x

Dunnette, D. A. 1979: A Geographically Variable Water Quality Index Used in Oregon. Journal of Water Pollution Control Federation 51(1): 53–61.

ESRI 2011. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.

Horton R. K. 1965: An index number system for rating water quality. Journal of Water Pollution Control Federation, 37(3), 300–306.

HS 1484-13. Hungarian Standard Water Quality. Part 12: Determination of Nitrate and Nitrite. Content by Spect-rophotometric Method. 2009. Letöltés: http://www.mszt.hu (2024.01.24.)

HS 448-18. Hungarian Standard Water Quality. Part 18: Drinking Water Analysis. Determination of Orthophos-phate and Total Phosphorus Using Spectrophotometric Method. 2009. Letöltés: http://www.mszt.hu (2024.01.24.)

HS ISO 7150-1:1992 Hungarian Standard Water quality. Determination of ammonium. Part 1: Manual spect-rophotometric method. Letöltés: http://www.mszt.hu (2024.01.24.)

HS ISO 21464:1998. Sampling of ground water. Letöltés: http://www.mszt.hu (2024.04.18.)

IBM Corp. Released 2019. IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY: IBM Corp.

Judeh, T., Bian, H., Shahrour, I. 2021. GIS-Based Spatiotemporal Mapping of Groundwater Potability and Palatabi-lity Indices in Arid and Semi-Arid Areas. Water 13: 1323. DOI: https://doi.org/10.3390/w13091323

Juhász D. 2022: A talajvíz minőségének állapotfelmérése Mezőkövesd település példáján. Az elmélet és gyakorlat találkozása a térinformatikában XIII: 169–176.

Juhász D. 2021: Mezőkövesd talajvízminőségének állapotfelmérése és értékelése. Az elmélet és a gyakorlat találko-zása a térinformatikában XII: 129–136.

Jumma, A.J., Mohd, E.T., Noorazuan, M.H. 2012: Groundwater pollution and wastewater management in Derna City, Libya. International Environmental Research Journal 6(1): 50–54.

Kannel, P.R., Lee, S., Lee, Y.S., Kanel, S.R., Khan, S.P. 2007: Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environmental Monitoring. Assess-ment 132: 93–110. DOI: https://doi.org/10.1007/s10661-006-9505-1

Kerényi, A., McIntosh, R.W. 2020: Changes on Earth as a Result of Interaction Between the Society and Nature. In: Sustainable Development in Changing Complex Earth Systems. Sustainable Development Goals Series. Sprin-ger, DOI: https://doi.org/10.1007/978-3-030-21645-0_4

Khorasani, H., Kerachian, R., Aghayi, M.M., Zahraie, B., Zhu, Z. 2020. Assessment of the impacts of sewerage net-work on groundwaterquantity and nitrate contamination: Case study of Tehran. World Environmental and Water Resources Congress 2020: Groundwater, Sustainability, Hydro-Climate/Climate Change, and Environ-mental Engineering; American Society of Civil Engineers: Reston, VA, USA, pp. 53–66.

Központi Statisztikai Hivatal (KSH) http://www.ksh.hu/docs/hun/xstadat/xstadat_eves/i_zrk006b.html (Letöltve: 2024.01.08.).

Lumb, A., Halliwell, D., Sharma, T. 2006: Application of CCME Water Quality Index to monitor water quality: A case of the Mackenzie River Basin, Canada”, Environmental Monitoring and Assessment 113: 411–429. DOI: https://doi.org/10.1007/s10661-005-9092-6

Machiwal, D., Jha, M.K. 2015: Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. Journal of Hydrology: Regional Studies 4: 80–110. DOI: https://doi.org/10.1016/j.ejrh.2014.11.005

Majolagbe, A.O., Adeyi, A.A., Osibanjo, O. 2016: Vulnerability assessment of groundwater pollution in the vicinity of an active dumpsite (Olusosun), Lagos, Nigeria. Chemistry International 2(4): 232–241.

Mester T. 2020. A szennyvízcsatorna-hálózat kiépítését követő talajvízminőség-változások vizsgálata egy kelet-magyarországi település példáján. Doktori értekezés. Debrecen, pp. 1–171.

Mester, T., Balla, D., Szabó, G. 2020: Assessment of Groundwater Quality Changes in the Rural Environment of the Hungarian Great Plain Based on Selected Water Quality Indicators. Water, Air, & Soil Pollution 231(11): 1–14. DOI: https://doi.org/10.1007/s11270-020-04910-6

Mester, T., Balla, D., Karancsi, G., Bessenyei, É., Szabó, G. 2019: Effects of nitrogen loading from domestic wastewa-ter on groundwater quality. Water SA 45(3): 349–358. http://dx.doi.org/10.17159/wsa/2019.v45.i3.6731

Mester, T., Balla, D., Szabó, G. 2018: Evaluation of the cleaning process of groundwater following the establishment of a sewage system. IOP Conference Series: Earth and Environmental Sciences 191: 1–6. DOI: https://doi.org/10.1088/1755-1315/191/1/012009

Mester, T., Szabó, G., Bessenyei, É., Karancsi, G., Barkóczi, N., Balla, D. 2017: The effects of uninsulated sewage tanks on groundwater. A case study in an eastern Hungarian settlement. Journal of Water and Land Development 33(4-6): 123–129. DOI: https://doi.org/10.1515/jwld-2017-0027

Nemčić-Jurec, J., Singh, S.K., Jazbec, A., Gautam, S.K., Kovač, I. 2017: Hydrochemical investigations of groundwater quality for drinking and irrigational purposes: two case studies of Koprivnica-Križevci County (Croatia) and district Allahabad (India). Sustainable Water Resources Management 5: 1-24. https://doi.org/10.1007/s40899-017-0200-x

Nlend, B., Celle-Jeanton, H., Huneau, F., Ketchemen-Tandia, B., Fantong, W.Y., Boum-Nkot, S.N., Etame, J. 2018: The impact of urban development on aquifers in large coastal cities of West Africa: Present status and future chal-lenges. Land Use Policy 75: 352-363. DOI: https://doi.org/10.1016/j.landusepol.2018.03.007

Ott, W.R. 1978: Environmental indices: Theory and practice. Ann Arbor Science Publishers Inc., Ann Arbor.

Prati, L., Pavanello, R., Pesarin, F. 1971: Assessment of surface water quality by a single index of pollution. Water Research 5: 741–775. DOI: https://doi.org/10.1016/0043-1354(71)90097-2

Prohászka V.J., Tormáné Kovács E., Grósz J., Waltner I. 2022: Az ásott kutak vízminősége két ökofaluban: Vis-nyeszéplakon és Gyűrűfűn. TÁJÖKÖLÓGIAI LAPOK| JOURNAL OF LANDSCAPE ECOLOGY 20.2 (2022): 41–58. DOI: https://doi.org/10.56617/tl.3449

Ravikumar, P., Somashekar, R.K. 2012: Assessment and modelling of groundwater quality data and evaluation of their corrosiveness and scaling potential using environmetric methods in Bangalore South Taluk, Karnataka State, India. Water Resources 39(4): 446–473. DOI: https://doi.org/10.1134/S0097807812040112

Richards, S., Paterson, E., Withers, P. J., Stutter, M. 2016: Septic tank discharges as multi-pollutant hotspots in catchments. Science of the Total Environment 542: 854–863. DOI: https://doi.org/10.1016/j.scitotenv.2015.10.160

Rotaru, A., Răileanu, P. 2008: Groundwater contamination from waste storage works. Environmental Engineering & Management Journal 7(6) 731–735.

Sharifi, M. 1990: Assessment of Surface Water Quality by an Index System in Anzali Basin. In The Hydrological Basis for Water Resources Management, IAHS, Vol. 197, pp. 163–171.

Smith, D.G. 1987: Water Quality Indexes for Use in New Zealand’s Rivers and Streams. Water Quality Centre Pub-lication No. 12, Water Quality Centre, Ministry of Works and Development, Hamilton, New Zealand.

Smith, D.G. 1990: A better water quality indexing system for rivers and stream. Water Research 24(10): 1237–1244. DOI: https://doi.org/10.1016/0043-1354(90)90047-A

Smoroń, S. 2016: Quality of shallow groundwater and manure effluents in a livestock farm. Journal of Water and Land Development 29(1): 59–66. DOI: https://doi.org/10.1515/jwld-2016-0012

Surfer® from Golden Software LLC

Swamee, P.K., Tyagi, A. 2007: Improved method for aggregation of water quality subindices. Journal of Environ-mental Engineering 133: 220–225. DOI: https://doi.org/10.1061/(ASCE)0733-9372(2007)133:2(220)

Szabó G., Szabó Sz., Szabó A., Szemán B. 2006: A talajvíz kutak szennyezettségének vizsgálata Mikepércsen és Bodrogkeresztúron In: Kertész Á, Dövényi Z., Kocsis K., Madarász B., Kovács A. (szerk.): III. Magyar Földrajzi Konferencia: absztrakt kötet + CD-ROM Budapest, Magyarország, MTA Földrajztudományi Kutatóintézet, p. 238.

Wilcoxon, F. 1992: Individual comparisons by ranking methods. In Breakthroughs in statistics. Springer, New York, pp. 196–202.

Published

2024-07-27

Issue

Section

Articles

How to Cite

Assessment of spatial and temporal changes in groundwater quality in a rural municipality using the CCME WQI water quality indicator. (2024). JOURNAL OF LANDSCAPE ECOLOGY | TÁJÖKÖLÓGIAI LAPOK , 22(1), 3-24. https://doi.org/10.56617/tl.4964

Similar Articles

11-20 of 133

You may also start an advanced similarity search for this article.