Polarization characteristics and attraction efficiency of conventional canopy traps and a new trap based on tabanid polarotaxis

Authors

  • Miklós Blahó Eötvös University, Physical Institute, Department of Biological Physics, Biooptics Laboratory

DOI:

https://doi.org/10.56617/tl.4116

Keywords:

tabanid fly, Tabanidae, tabanid traps, polarization vision, polarotaxis, polarimetry

Abstract

Tabanid flies can cause severe problems for humans and animals because of the diseases vectored by the haematophagous females when sucking blood from vertebrates. To catch tabanids, several different traps have been developed, many of them attracting tabanids visually by shiny black objects and/or surfaces. It is believed that such black structures may imitate the dark silhouette of the host animal, and their flapping in the wind might mimic the motion of the host. Although the most frequently used visual target is a shiny black ball, the reason for its attractivity is unclear. If the exact cause(s) of this attractivity could be revealed, the attraction of the visual target of tabanid traps could be improved. The recent discovery of positive polarotaxis (i.e. attraction to horizontally polarized light) in tabanids puts the phenomenon in a new light. This polarotactic behaviour can be used to develop new tabanid traps. Based on our observation that tabanids are attracted to horizontal polished black gravestones, we present here a new polarization canopy trap. The visual target of the new trap is a horizontal shiny black disk with a narrow shiny black skirt near the ground level. Using videopolarimetry, we measured the reflection-polarization characteristics of this new visual target, and compared them with those of a shiny black sphere and torus. In choice experiments in the field we demonstrated that our new visual target is much more attractive to tabanids than the black sphere and torus. We showed that the reason for the very high attractiveness of the new visual target is that it reflects much larger amount of horizontally polarized light than the conventional black target ball. We also measured and compared the reflection-polarization characteristics of small-scale models of some conventional canopy traps. Taking into consideration the amount of horizontally polarized light reflected from these traps, we revisited the causes of their attraction to tabanids.

Author Biography

  • Miklós Blahó, Eötvös University, Physical Institute, Department of Biological Physics, Biooptics Laboratory

    majkl2000@gmail.com

References

Bernáth B., Szedenics G., Molnár G., Kriska Gy., Horváth G. 2001a: Visual ecological impact of "shiny black anthropogenic products" on aquatic insects: oil reservoirs and plastic sheets as polarized traps for insects associated with water. Archives of Nature Conservation and Landscape Research 40: 87-107.

Bernáth B., Szedenics G., Molnár G., Kriska Gy., Horváth G. 2001b: Visual ecological impact of a peculiar waste oil lake on the avifauna: dual-choice field experiments with water-seeking birds using huge shiny black and white plastic sheet. Archives of Nature Conservation and Landscape Research 40: 1-28.

Bernáth B., Kriska Gy., Suhai B., Horváth G. 2008a: Wagtails (Aves: Motacillidae) as insect indicators on plastic sheets attracting polarotactic aquatic insects. Acta Zoologica Academiae Scientiarum Hungaricae 54: 145-155.

Bernáth B., Horváth G., Gál J., Fekete G., Meyer-Rochow V. B. 2008b: Polarized light and oviposition site selection in the yellow fever mosquito: No evidence for positive polarotaxis in Aedes aegypti. Vision Research 48: 1449-1455. https://doi.org/10.1016/j.visres.2008.04.007

Bracken G. K., Hanes W., Thorsteinson A. J. 1962: The orientation of horse flies and deer flies (Tabanidae: Diptera). II. The role of some visual factors in the attractiveness of decoy silhouettes. Canadian Journal of Zoology 40: 689-695. https://doi.org/10.1139/z62-064

Catts E. P. 1970: A canopy trap for collecting Tabanidae. Mosquito News 30: 472-474.

Csabai Z., Boda P., Bernáth B., Kriska G., Horváth G. 2006: A 'polarisation sun-dial' dictates the optimal time of day for dispersal by flying aquatic insects. Freshwater Biology 51: 1341-1350. https://doi.org/10.1111/j.1365-2427.2006.01576.x

Foil L. D. 1989: Tabanids as vectors of disease agents. Parasitology Today 5: 88-96. https://doi.org/10.1016/0169-4758(89)90009-4

Gressitt J. C. L., Gressitt M. K. 1962: An improved Malaise trap. Pacific Insects 4: 87-90.

Hall M. J. R., Farkas R., Chainey J. E. 1998: Use of odour-baited sticky boards to trap tabanid flies and investigate repellents. Medical and Veterinary Entomology 12: 241-245. https://doi.org/10.1046/j.1365-2915.1998.00107.x

Hansens E. J., Bosler E. M., Robinson J. W. 1971: Use of traps for study and control of saltmarsh greenhead flies. Journal of Economical Entomology 64: 1481-1486. https://doi.org/10.1093/jee/64.6.1481

Hayakawa H. 1980: Biological studies on Tabanus iyoensis group of Japan, with special reference to their blood-sucking habits (Diptera, Tabanidae). Bulletin of the Tohoku Natural and Agricultural Experimental Station 62: 131-321.

Horváth G., Varjú D. 1997: Polarization pattern of freshwater habitats recorded by video polarimetry in red, green and blue spectral ranges and its relevance for water detection by aquatic insects. Journal of Experimental Biology 200: 1155-1163. https://doi.org/10.1242/jeb.200.7.1155

Horváth G., Varjú D. 2004: Polarized Light in Animal Vision - Polarization Patterns in Nature. Springer-Verlag, Heidelberg - Berlin - New York. https://doi.org/10.1007/978-3-662-09387-0

Horváth G., Malik P., Kriska G., Wildermuth H. 2007: Ecological traps for dragonflies in a cemetery: the attraction of Sympetrum species (Odonata: Libellulidae) by horizontally polarizing black gravestones. Freshwater Biology 52: 1700-1709 https://doi.org/10.1111/j.1365-2427.2007.01798.x

Horváth G., Kriska G., 2008: Polarization vision in aquatic insects and ecological traps for polarotactic insects. In: Aquatic Insects: Challenges to Populations. In: Lancaster, J. and Briers, R. A. (eds.): CAB International Publishing, Wallingford, Oxon, UK, Chapter 11, pp. 204-229. https://doi.org/10.1079/9781845933968.0204

Horváth G., Majer J., Horváth L., Szivák I., Kriska G. 2008: Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light. Naturwissenschaften 95: 1093-1100. https://doi.org/10.1007/s00114-008-0425-5

Horváth G., Kriska G., Malik P., Robertson B. 2009: Polarized light pollution: a new kind of ecological photopollution. Frontiers in Ecology and the Environment 7: 315-327. https://doi.org/10.1890/080129

Hribar L. J., Leprince D. J., Foil L. D. 1992: Ammonia as an attractant for adult Hybomitra lasiophthalma (Diptera: Tabanidae). Journal of Medical Entomology 29: 346-348. https://doi.org/10.1093/jmedent/29.2.346

Kniepert F. W. von 1979: Eine leistungsfähige Methode zum Fang Männlicher Bremsen (Diptera, Tabanidae). Zeitschrift für Angewandte Entomologie 88: 88-90. https://doi.org/10.1111/j.1439-0418.1979.tb02481.x

Kriska Gy., Horvath G., Andrikovics S. 1998: Why do mayflies lay their eggs en masse on dry asphalt roads? Water-imitating polarized light reflected from asphalt attracts Ephemeroptera. Journal of Experimental Biology 200: 2273-2286. https://doi.org/10.1242/jeb.201.15.2273

Kriska G., Csabai Z., Boda P., Malik P., Horváth G. 2006: Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection-polarization signals. Proceedings of the Royal Society B 273: 1667-1671. https://doi.org/10.1098/rspb.2006.3500

Kriska Gy., Malik P., Csabai Z., Horváth G. 2006: Why do highly polarizing black burnt-up stubble-fields not attract aquatic insects? An exception proving the rule. Vision Research 46: 4382-4386. https://doi.org/10.1016/j.visres.2006.08.020

Kriska G., Bernáth B., Horváth G. 2007: Positive polarotaxis in a mayfly that never leaves the water surface: polarotactic water detection in Palingenia longicauda (Ephemeroptera). Naturwissenschaften 94: 148-154. https://doi.org/10.1007/s00114-006-0180-4

Kriska G., Malik P., Szivák I., Horváth G. 2008: Glass buildings on river banks as "polarized light traps" for mass-swarming polarotactic caddis flies. Naturwissenschaften 95: 461-467. https://doi.org/10.1007/s00114-008-0345-4

Kriska Gy., Majer J., Horváth L., Szivák I., Horváth G. 2008a: Polarotaxis in tabanid flies and its practical significance. Acta Biologica Debrecina Supplementum Oecologica Hungarica 18: 101-108.

Kriska Gy., Barta A., Suhai B., Bernáth B., Horváth G. 2008b: Do brown pelicans mistake asphalt roads for water in deserts? Acta Zoologica Academiae Scientiarum Hungaricae 54: 157-165.

Kriska G., Bernáth B., Farkas R., Horváth G. 2009: Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae). Journal of Insect Physiology (in press) https://doi.org/10.1016/j.jinsphys.2009.08.013

Lehane M. J. 2005: The Biology of Blood-Sucking in Insects. 2nd edition, Cambridge University Press, Cambridge, UK.

Luger S. W. 1990: Lyme disease transmitted by a biting fly. New England Journal of Medicine 322: 1752-1759. https://doi.org/10.1056/NEJM199006143222415

Maat-Bleeker F., Bronswijk van J. E. M. H. 1995: Allergic reactions caused by bites from blood-sucking insects of the Tabanidae family, species Haematopota pluvialis (L.). [abstract]. Allergy 50 (Supplement 26): 388

Majer J. 1987: Tabanids - Tabanidae. In: Fauna Hungariae. Akadémiai Kiadó, Budapest, 14: 1-57.

Malaise R. 1937: A new insect-trap. Entomologisk Tidskrift Stockholm 58: 148-160.

Malik P., Hegedüs R., Kriska G., Horváth G. 2008: Imaging polarimetry of glass buildings: Why do vertical glass surfaces attract polarotactic insects? Applied Optics 47: 4361-4374. https://doi.org/10.1364/AO.47.004361

Mihok S. 2002: The development of a multipurpose trap (the Nzi) for tsetse and other biting flies. Bulletin of Entomological Research 92: 385-403. https://doi.org/10.1079/BER2002186

Mizera F., Bernáth B., Kriska Gy., Horváth G. 2001: Stereo Videopolarimetry: Measuring and Visualizing Polarization Patterns in Three Dimensions. Journal of Imaging Science and Technology 45: 393-399.

Moore T. R., Slosser J. E., Cocke J., Newton W. H. 1996: Effect of trap design and color in evaluating activity of Tabanus abactor Philip in Texas rolling plains habitat. Southwestern Entomologist 21: 1-11.

Muirhead-Thomson R. C. 1991: Trap Responses of Flying Insects: The Influence of Trap Design on Capture Efficiency. Academic Press, Harcourt Brace Jovanovich Publishers, London - New York.

Rahman A. H. A. 2005: Observations on the trypanosomosis problem outside the tsetse belts of Sudan. Rev. Sci. Tech. Off. Int. Epiz. 24: 965-972. https://doi.org/10.20506/rst.24.3.1624

Roberts R. H. 1977: Attractancy of two black decoys and CO2 to tabanids (Diptera: Tabanidae). Mosquito News 37: 169-172.

Sasaki H. 2001: Comparison of capturing tabanid flies (Diptera: Tabanidae) by five different color traps in the fields. Applied Entomology and Zoology 36: 515-519. https://doi.org/10.1303/aez.2001.515

Thompson P. H. 1969: Collecting methods for Tabanidae. Annales of the Entomological Society of America 62: 50-57. https://doi.org/10.1093/aesa/62.1.50

Thompson P. H., Pechuman L. L. 1970: Sampling populations of Tabanus quinquevittatus about horses in New Jersey, with notes on the identity and ecology. Journal of Economical Entomology 63: 151-155. https://doi.org/10.1093/jee/63.1.151

Thompson P. H., Bregg E. J. 1974: Structural modifications and performance of the modified animal trap and the modified Manitoba trap for collection of Tabanidae (Diptera). Proceedings of the Entomological Society of Washington 76: 119-122.

Thorsteinson A. J., Bracken G. K., Hanec W. 1965: The orientation behaviour of horse-flies and deer-flies (Tabanidae: Diptera). III. The use of traps in the study of orientation of tabanids in the field. Entomologia Experimentalis et Applicata 8: 189-192. https://doi.org/10.1111/j.1570-7458.1965.tb00853.x

Thorsteinson A. J., Bracken G. K., Hanec W. 1965: The orientation behaviour of horseflies and deerflies (Tabanidae: Diptera). III. The use of traps in the study of orientation of tabanids in the field. Entomologia experimentalis et applicata 8: 189-192. https://doi.org/10.1111/j.1570-7458.1965.tb00853.x

Thorsteinson A. J., Bracken G. K., Tostawaryk W. 1966: The orientation behaviour of horseflies and deerflies (Tabanidae: Diptera). VI. The influence of the number of reflecting surfaces on attractiveness to tabanids of glossy black polyhedra. Canadian Journal of Zoology 44: 275-279. https://doi.org/10.1139/z66-026

Veer V., Parashar B. D., Prakash S. 2002: Tabanid and muscoid haematophagous flies, vectors of trypanosomiasis or surra disease in wild animals and livestock in Nandankanan Biological Park, Bhubaneswar (Orissa, India). Current Science 82: 500-503.

Wall W. J., Doane O. W. 1980: Large scale use of box traps to study and control saltmarsh greenhead flies (Diptera: Tabanidae) on Cape Cod, Massachusetts. Environmental Entomology 9: 371-375. https://doi.org/10.1093/ee/9.4.371

Wildermuth H. 1998: Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: a behavioural field test. Naturwissenschaften 85: 297-302. https://doi.org/10.1007/s001140050504

Wildermuth H. 2007: Polarotaktische Reaktionen von Coenagrion puella und Libellula quadrimaculata auf Erdbeerkulturen als ökologische Falle (Odonata: Coenagrionidae, Libellulidae). Libellula 26: 143-150.

Wildermuth H., Horváth G. 2005: Visual deception of a male Libellula depressa by the shiny surface of a parked car (Odonata: Libellulidae). International Journal of Odonatology 8: 97-105. https://doi.org/10.1080/13887890.2005.9748246

Wilson B. H., Tugwell N. P., Burns E. C. 1966: Attraction of tabanids to traps baited with dry-ice under field conditions in Louisiana. Journal of Medical Entomology 3: 148-149. https://doi.org/10.1093/jmedent/3.2.148

Published

2009-12-29

Issue

Section

Tanulmányok, eredeti közlemények

How to Cite

Polarization characteristics and attraction efficiency of conventional canopy traps and a new trap based on tabanid polarotaxis. (2009). JOURNAL OF LANDSCAPE ECOLOGY | TÁJÖKÖLÓGIAI LAPOK , 7(2), 329-347. https://doi.org/10.56617/tl.4116