Examination of soil agronomical structure in field experiments

Authors

  • Petra Földesi Szent István University, Institute of Crop Production, Faculty of Agriculture and Environmental Sciences, H-2103 Gödöllő, Páter K. Str. 1.
  • Csaba Gyuricza Szent István University, Institute of Crop Production, Faculty of Agriculture and Environmental Sciences, H-2103 Gödöllő, Páter K. Str. 1

DOI:

https://doi.org/10.56617/tl.3905

Keywords:

agronomic structure, clod fraction, aggregate fraction, dust fraction, conservation tillage

Abstract

Due to the ever increasing strive for higher yields and more intensive crop production, the tillage operations, respecting the soil fertility, the structure and the biological condition, have been pushed into the background over the past few decades. Nowadays the sustainable application of land use systems has come to the foreground, since along with the environmental polluting chemicals that are applied during the agricultural production, the improperly chosen tillage systems may cause extra expenses, soil degradation furthermore environmental damage. During our field experiments the agronomic structure of the soil, its resistance and humidity were assessed, in order to improve the physical condition of the soil. The aim of this study is to detail how the proportions of the clod, aggregate and dust fractions changed at conventional tillage under farmland conditions. In year 2004 particles of the aggregate fraction amounted to 62.8–84.0% of the soil. The clod fraction achieved 14.5–35.0%, while 1.5– 6.1% dust fractions were recorded in the examined farms. In year 2004 significant differences were recorded for the agronomic structure of the soil between the six set experiments for the clod and aggregate fractions (SD5%clod=10.2; SD5%aggregate=10.8). No significant difference could be detected between the dust fractions. Out of the 3 examined years, 2005 proved to be the one with the most precipitation, the proportion of the aggregate fraction varied between 78.6–81.8%, the clod fraction fluctuated between 15.7–19.6%, while a range of 1.5–3% was recorded for the dust fraction. In the third examined year, the proportion of the aggregate fraction was 71.4–81.5%, that of the clod fraction amounted to 17.3–26.8%, while the dust fraction represented 1.3–2% in the field experiments. When evaluating the effects of the conventional tillage system for years 2005 and 2006, no significant difference could be observed between the clod-, aggregate- and dust fraction experiments.

Author Biography

  • Petra Földesi, Szent István University, Institute of Crop Production, Faculty of Agriculture and Environmental Sciences, H-2103 Gödöllő, Páter K. Str. 1.

    corresponding author
    foldesipetra@gmail.com

References

Baráth Cs-Né, Ittzés A., Ugrósdy Gy. 1996: Biometria. Mezőgazda Kiadó. Budapest

Bencsik K.: 2009: Talajhasználati módszerek értékelése talajvédelmi szempontból. Doktori (Ph.D) értekezés. Gödöllő

Birkás M.: 1995: Energiatakarékos, talajvédő és kímélő talajművelés. Egyetemi jegyzet, GATE Gödöllő

Birkás M. (szerk.) 2002: Környezetkímélő és energiatakarékos talajművelés. Akaprint Nyomdaipari Kft.

Birkás M., Gyuricza Cs. (szerk.) 2004: Talajhasználat – Műveléshatás – Talajnedvesség. Quality-Press Nyomda & Kiadó Kft.

Birkás M. (szerk.) 2006: Földművelés és földhasználat. Mezőgazda Kiadó

Blanco-Canqui, H., Lal, R. 2007: Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till. Soil & Tillage Research 95: 240-254. https://doi.org/10.1016/j.still.2007.01.004

Bronick, C. J., Lal, R. 2005: Soil structure and management: a review. Geoderma 124, 3-22. https://doi.org/10.1016/j.geoderma.2004.03.005

Chan, K.Y. 1982: Shrinkage characteristics of soil clods from a gray clay under intensive cultivation. Australian Journal of Soil Research 26: 509-518. https://doi.org/10.1071/SR9820065

Cotching, W.E., Allbrook, R.F., Gibbs, H.S. 1979: Influence of maize cropping on the structure of two soils int he Waikato district, New Zealand. New Zealand Journal of Agricultural Research 22: 431-438. https://doi.org/10.1080/00288233.1979.10430771

Dexter, A.R., Bird, N.R.A. 2001: Methods for predicting the optimum and the range of water contents for tillage based ont he water retention curve. Soil & Tillage Research 57: 203-212. https://doi.org/10.1016/S0167-1987(00)00154-9

Dexter, A.R. 2002: Soil structure: the key to soil function. Adv. GeoEcology 35: 57-69.

Dexter, A.R., Birkás, M. 2004: Prediction of soil structures produced by tillage. Soil & Tillage Research 79: 233-238. https://doi.org/10.1016/j.still.2004.07.011

Dusek L. 2007: A Tápió-mente. Pende Print Nyomdaipari Kft.

Gyuricza Cs. (szerk.) 2001: A szántóföldi talajhasználat alapjai. Akaprint Nyomdaipari Kft.

Hermavan, B., Cameron, K.C. 1993: Structural changes in a silt loam under long-term conventional or minimum tillage. Soil & Tillage Research 26: 139-150. https://doi.org/10.1016/0167-1987(93)90040-V

Keller, T., Arvidsson, J., Dexter, A. R. 2007: Soil structures produced by tillage as affected by soil water content and the physical quality of soil. Soil & Tillage Research 92: 45-52. https://doi.org/10.1016/j.still.2006.01.001

Langmaack, M. 1999: Earthworm communities in arable land influenced by tillage, compaction, and soil. Zeitschrift für Ökologie und Naturschutz 8: 11-21.

Lawrence, G.P. 1977: Measurement of pore size in fine textured soils: A review of existing techniques. Journal of Soil Science 28: 527-540. https://doi.org/10.1111/j.1365-2389.1977.tb02261.x

Loch, R.J., Foley, J.L. 1994: Measurement of aggregate breakdown under rain: comparison with tests of water stability and relationships with field measurements of infiltration. Australian Journal of Soil Research 32: 701-720. https://doi.org/10.1071/SR9940701

Mulumba, L. N., Lal, R. 2008: Mulching effects on selected soil physical properties. Soil & Tillage Research 98: 106-111. https://doi.org/10.1016/j.still.2007.10.011

Pagliai, M., Raglione, M., Panini, T., Maletta, M., La-Marca, M. 1995: The structure of two alluvial soils in Italy after 10 years of conventional and minimum tillage. Soil & Tillage Research 34, 209-223. https://doi.org/10.1016/0167-1987(95)00471-4

Pagliai, M., Vignozzi, N., Pellegrini, S. 2004: Soil structure and the effect of management practices. Soil & Tillage Research 79: 131-143. https://doi.org/10.1016/j.still.2004.07.002

Ringrose-Voase, A.J., Bullock, P. 1984: The automatic recognition and measurement of soil pore types by image analysis and computer programs. Journal of Soil Science 35: 673-684. https://doi.org/10.1111/j.1365-2389.1984.tb00624.x.

Tóth Z. 2001: A talajtermékenység vizsgálata vetésforgóban és monokultúrában. Doktori (Ph.D) értekezés. Keszthely

Shipitalo, M.J., Le Bayon, R.-C. 2004: Quantifying the Effects of Earthworms on Soil Aggregation and Porosity. Eartworm Ecology10: 183–200.

Stefanovits P. 1992: Talajtan. Mezőgazda Kiadó, Budapest.

Sváb J. 1981: Biometriai módszerek a kutatásban. Mezőgazdasági Kiadó. Budapest.

Virág S. 2005: A művelés hatása a talajok rögképződésére és a rögaprítás energetikai összefüggései, PhD értekezés, Debrecen

Wairiu, M., Lal, R. 2006: Tillage and land use effects on soil microporosity in Ohio, USA and Kolombangara, Solomon Islands. Soil & Tillage Research 88: 80-84. https://doi.org/10.1016/j.still.2005.04.013

Zhang, G.S., Chan, K.Y., Oates, A., Heenan, D.P., Huang, G.B. 2007: Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. Soil & Tillage Research 92: 122-128. https://doi.org/10.1016/j.still.2006.01.006

Published

2011-07-16

Issue

Section

Articles

How to Cite

Examination of soil agronomical structure in field experiments. (2011). JOURNAL OF LANDSCAPE ECOLOGY | TÁJÖKOLÓGIAI LAPOK , 9(1), 191-201. https://doi.org/10.56617/tl.3905

Similar Articles

21-30 of 504

You may also start an advanced similarity search for this article.