Surveying the spatiotemporal changes of afforestation in the Nyírség – from the aspect of wind erosion

Authors

  • Gábor Négyesi University of Debrecen, Institute of Earth Sciences, Department of Physical Geography and Geoinformatics H-4010, Debrecen Egyetem t.1. https://orcid.org/0000-0002-6621-3290

DOI:

https://doi.org/10.56617/tl.3583

Keywords:

Nyírség, afforestation, shelterbelts, wind erosion

Abstract

The aim of our study was to carry out a detailed survey on the spatiotemporal changes of afforestations (forests and shelterbelts) in the Nyírség. The base data for mapping the changes of forests and shelterbelts consisted of the maps of I, II and III Military Surveys of Hungary from the 1940’s, civil topographic maps from the 1980’s and ortophotographs from 2005. Besides these data sources, CORINE Land Cover database from 2000, 2006, 2012 and a forest database containing the species distribution of forests from 2014 were also used for surveying the changes of forest cover. Our results pointed out that large differences were found in forest cover and in the length of shelterbelt systems as well as in the tendency of changes in different parts of the Nyírség. On the one hand all the forests and shelterbelts are situated on the two sides of the Nyírség watershed: the dominance of shelterbelts on the northern side and forests on the southern side can be observed in relation with soil properties. Nevertheless, the increase of forest area is continuous but the length of shelterbelts has decreased since the change of regime. In connection with wind shelterbelts we can conclude that half-two- thirds part of the shelterbelts are planted improperly in the two study area (Western Nyírség, Southern Nyírség). It can be explained by the high rate of one-row shelterbelts, the discontinuity of shelterbelts and the improper direction of planting.

Author Biography

  • Gábor Négyesi, University of Debrecen, Institute of Earth Sciences, Department of Physical Geography and Geoinformatics H-4010, Debrecen Egyetem t.1.

    negyesi.gabor@science.unideb.hu

References

Asztalos I., Bartha, D. 1988: Akác-nyár telepítési javaslat a Nyírségre. Az Erdő 37: 163–164.

Bartha D., Oroszi S. 2003: Az alföldfásítási programok története, különös tekintettel a természetvédelem kérdéskörére. Erdészettörténeti Közlemények 60: 34-63.

Bartus, M., Barta, K., Szatmári J., Farsang A., 2017: Modeling wind erosion hazard control efficiency with an emphasis on shelterbelt system and plot size planning. Zeitschrift für Geomorphologie 61, 123–133. https://doi.org/10.1127/zfg/2017/0406

Berényi D. 1950: A Nyírség és az ezzel határos területek éghajlata. A növénytermesztési szaktanácsadás tényezői és irányelvei.

Borovszky S. (szerk.) 1900: Szabolcs vármegye. Apolló Irodalmi és Nyomdai Rt., Budapest.

Borsy Z. 1961: A Nyírség természeti földrajza. Akadémiai Kiadó p. 227.

Borsy Z. 1991: Blown-sand territories in Hungary. Zeitscrift für Geomorphologie Supplementum 90: 1–14.

Brandle, J.R., Hodges, L., Zhou, X.H., 2004: Windbreaks in North American agricultural systems. Agroforestry Systems 61: 65–78. https://doi.org/10.1007/978-94-017-2424-1_5

Caborn, J.M.1957: Shelterbelts and microclimate. Forestry Commission Bulletin No. 29. p. 135.

Cleugh, H.A. 2002: Field measurements of windbreak effects on airflow, turbulent exchanges and microclimates. Australian Journal of Experience Agriculture 42 (6): 665–677. https://doi.org/10.1071/EA02004

Cornelis, W.M., Gabriels, D. 2005: Optimal windbreak design for wind-erosion control. Journal of Arid Environment 61: 315–332. https://doi.org/10.1016/j.jaridenv.2004.10.005

Dai, A., Trenberth, K.E., Qian, T. 2004: A global dataset of palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology 5: 1117– 1130. https://doi.org/10.1175/JHM-386.1

Fuisz J.1955. Akácosítás és fenyvesítés a Nyírségben. Az Erdő 4, 132–135.

Funk, R., Skidmore, E.L., Hagen, L.J. 2004: Comparison of wind erosion measurements in Germany with simulated soil losses by WEPS. Environmental Modelling and Software 19: 177–183. https://doi.org/10.1016/S1364-8152(03)00120-8

Gál J. 1966: Szélerózió elleni védekezés mezővédő erdősávokkal. Agrokémia és Talajtan 15: 199–211.

Goossens, D., Buck, B. 2011: Effects of wind erosion, off-road vehicular activity, atmospheric conditions and the proximity of a metropolitan area on PM10 characteristics in a recreational site. Athmospheric Environment 45: 94–107. https://doi.org/10.1016/j.atmosenv.2010.09.046

Guo, Z., Huang, N., Dong, Z., Zobeck, T.M. 2014: Wind erosion induced soil degradation in Northern China: Status, measures and perspective. Sustainability 6: 8951–8966. https://doi.org/10.3390/su6128951

Heisler, G.M., DeWalle, D.R. 1988: Effect of windbreak structure on wind flow. Agricultural Ecosystems and Environment 22-23: 41–69. https://doi.org/10.1016/0167-8809(88)90007-2

Kemény Gy. 1913: Szabolcs vármegye gazdaság-földrajzi monogárfiája.

Kiss T. 1997: Eróziós mérések a parabolabuckák lejtőin a debreceni Erdőspuszta területén. Acta Geographica ac Geologica et Meteorologica Debrecina Tomus 24: 151–165.

Lóki J. 1985: A téli nyírségi szélerózióról. Acta Academiae Paedagogicae Nyiregyháziensis Tomus 10: 35-41.

McNaughton, K.G. 1988: Effects of windbreaks on turbulent transport and microclimate. Agricultural Ecosystems and Environment 22–23: 17–39. https://doi.org/10.1016/B978-0-444-43019-9.50007-9

Lowry, W. P. 1967: Weather and life: An introduction to biometeorology. Academic Press. New York p. 306.

Magyar P. 1961: Alföldfásítás II. Akadémiai Kiadó p. 622.

Négyesi, G., Lóki J., Buró, B., Szabó, J., Bakacsi, Zs., Pásztor, L. 2015: The potential wind erosion map of an area covered by sandy and loamy soils – based on wind tunnel measurements. Zeitschrift für Geomorphologie 59: 59–77. https://doi.org/10.1127/0372-8854/2014/0131

Pásztor, L., Szabó, J,, Bakacsi, Zs,, Laborczi, A. 2012: Elaboration and applications of spatial soil information systems and digital soil mapping at Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences. Geocarto International 28: 1–15. https://doi.org/10.1080/10106049.2012.685895

Rehacek, D., Khel, T., Kucera, J., Vopravil, J., Petera, M. 2017: Effect of windbreaks on wind speed reduction and soil protection against wind erosion. Soil and Water Resources 12: 128–135. https://doi.org/10.17221/45/2016-SWR

Rivest, D., Vezina, A. 2015: Maize yield patterns on the leeward side of tree windbreaks are site-specific and depend on rainfall conditions in eastern Canada. Agroforestry Systems 89: 237 –246. https://doi.org/10.1007/s10457-014-9758-6

Skidmore, E.L. 1969: Modifying the microclimate with wind barriers. Proceedings of seminar ”Modifying the Soil and Water Environment for Approaching the Agricultural Potential of the Great Plains” Agricultural Council Publishers 34(1): 107–120.

Stefanovits P. 1996: Talajtan. Mezőgazda kiadó, p. 470.

Szatmári, J. 1997: Wind erosion risk on the Southern part of the Great Hungarian Plain. Acta Geographica Szegediensis 36: 121–135.

Takle, E.S., Wang, H., Schmidt, R.A., Brandle, J.R. Jairell, R.L. 1997: Pressure perturbation around shelterbelts: Measurements and model results. 12th Symposium on Boundary Layers and Turbulence: 563–564. American Meteorological Society, Vancouver, British Columbia

Torita, H., Satou, H. 2007: Relationship between shelterbelt structure and mean wind reduction. Agricultural For Meteorology 145: 186–194. https://doi.org/10.1016/j.agrformet.2007.04.018

Wang, H., Takle, E.S. 1996: On three-dimensionality of shelterbelt structure and its influences on shelter effects. Boundary-Layer Meteorology 79: 83–105. https://doi.org/10.1007/BF00120076

Wu, T., Zhanga, P., Zhanga, L., Wanga, J., Yua, M., Zhouc, X., Wang, G., G. 2018: Relationships between shelter effects and optical porosity: A meta-analysis for tree windbreaks. Agricultural and Forest Meteorology 259: 75–81. https://doi.org/10.1016/j.agrformet.2018.04.013

Zagyvai G., Bartha D., 2015: Nyírségi erdőtömbök és környezetük tájtörténeti szempontú vizsgálata.

Tájökológia Lapok 13(1): 59-72.

Zheng, X. 2009: Mechanics of wind-blown sand movements. Springer p. 309. https://doi.org/10.1007/978-3-540-88254-1

Zheng, X., Zhu, J., Xing, Z. 2017: Assessment of the effects of shelterbelts on crop yields at the regional scale in Northeast China. Agricultural Systems 143: 49–60. https://doi.org/10.1016/j.agsy.2015.12.008

Zhou, X., Brandle, J.R., Mize, C.W., Takle, E.S., 2004: Three-dimensional aerodynamic structure of a tree shelterbelt: definition, characterization and working models. Agroforestry Systems 63: 133–147. https://doi.org/10.1007/s10457-004-3147-5

Published

2018-12-19

Issue

Section

Articles

How to Cite

Surveying the spatiotemporal changes of afforestation in the Nyírség – from the aspect of wind erosion. (2018). JOURNAL OF LANDSCAPE ECOLOGY | TÁJÖKÖLÓGIAI LAPOK , 16(2), 113-128. https://doi.org/10.56617/tl.3583

Similar Articles

You may also start an advanced similarity search for this article.