Perspectives of hyperspectral data application for vegetation studies

Autor/innen

  • Károly Bakos Telecommunication and Remote Sensing Laboratory, University of Pavia, Department of Electronics Via Ferrata 1. 27100 PAVIA, ITALY
  • Paolo Gamba Telecommunication and Remote Sensing Laboratory, University of Pavia, Department of Electronics Via Ferrata 1. 27100 PAVIA, ITALY

DOI:

https://doi.org/10.56617/tl.4090

Schlagwörter:

Remote Sensing, Hyperspectral, Vegetation, Image processing, Digital Imagery

Abstract

In this paper the possibilities of hyperspectral data processing are investigated regarding the application of these images in natural and ecological applications. A short overview is given of the available methods for interpretation purposes and special attention is paid on how the unique properties of hyperspectral data are affecting the choice of suitable methods for processing. Further steps required for developing a set of application dependent image processing chain is also addressed with the aim of applying both spatial and spectral information contained in datasets. A broad identification of possible processing chain is discussed with the aim of developing more standardised and application suited way of processing of the large data volumes. Automatic or semi-automatic procedures are proposed and key steps are identified that could lead to high quality mapping products by means of digital signal processing. This work is to be continued with testing the performance at different stages of interpretation while different techniques are used, and a document is to be supplied through HYPER-I-NET with the collection of results and application specific suggestions regarding hyperspectral data application for vegetation monitoring purposes.

Autor/innen-Biografie

  • Károly Bakos, Telecommunication and Remote Sensing Laboratory, University of Pavia, Department of Electronics Via Ferrata 1. 27100 PAVIA, ITALY

    corresponding author
    bakos@googlemail.com

Literaturhinweise

Bakos K., Gamba P. 2009: Potential of hyperspectral remote sensing for vegetation mapping of high mountain ecosystems, 6th EarSEL SIG IS workshop 2009 Tel Aviv (Acceppted)

Benediktsson, J. A., Pesaresi, M., Arnason, K. 2003: Classification and Feature Extraction of Remote Sensing Images from Urban Area based on Morphological Approaches. IEEE Trans. On Geoscience and Remote Sensing, 41: 1940-1949. https://doi.org/10.1109/TGRS.2003.814625

Berk, A., Bernstein, L. S., Anderson, G. P., Acharya, P. K., Robertson, D. C., Chetwynd, J. H., Adler-Golden, S. M., 1998: MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sensing of Environment, 65: 367-375. https://doi.org/10.1016/S0034-4257(98)00045-5

Chang, C. I. 2007: Hyperspectral data exploitation. Theory and applications, John Willey and Sons Inc. https://doi.org/10.1002/0470124628

Fukunaga, K. 1990: Introduction to Statistical Pattern Recognition, Second Edition, Academic Press. https://doi.org/10.1016/B978-0-08-047865-4.50007-7

Gamba, P., Dell'acqua, F., Ferrari, A., Palmason, J.A., Benediktsson, J.A., Arnasson, K. 2004: Exploiting spectral and spatial information in hyperspectral urban data with high resolution. IEEE Geosci. Remote Sensing Letters, 1: 322-326. https://doi.org/10.1109/LGRS.2004.837009

Gong, P.,, Howarth, P. J. 1992: Land-use classification of SPOT HRV data using a cover-frequency method. International Journal of Remote Sensing, 13: 1459-1471. https://doi.org/10.1080/01431169208904202

Grauch, V. J. S. 2002: High-Resolution Aeromagnetic Survey to Image Shallow Faults, Dixie Valley Geothermal Field, Nevada U.S. Geological Survey, MS 964, Federal Center, Denver CO 80225 (Open-File Report 02-384) https://doi.org/10.3133/ofr02384

Gualitieri, J. A., Cromp, R. F. 1998: Support vector machines for hyperspectral remote sensing classification. Proc. SPIE-27th AIPR Workshop Advances in Computer Assisted Recognition, 3584: 221-232. https://doi.org/10.1117/12.339824

Haralick, R. M., Shanmugam, K., Dinstein, I. 1973: Texture features for image classification. IEEE Trans. Systems Man Cybernet, 3: 610-621. https://doi.org/10.1109/TSMC.1973.4309314

Hyvarinen, A., Karhunen, J., Oja, E. 2001: Independent Component Analysis. John Wiley and Sons, New York, HYRESSA SWOT and User Needs workshop report, accessed on line at http://www.hyressa.net/documents/, April 2007. https://doi.org/10.1002/0471221317

Landgrebe, D. A. 2003: Signal Theory Methods in Multispectral Remote Sensing, John Wiley and Sons, Hoboken, New Jersey https://doi.org/10.1002/0471723800

Lee, C., Landgrebe, D. A. 1997: Decision Boundary Feature Extraction for Neural Networks. IEEE Trans. on Geoscience and Remote Sensing, Vol. 8, n. 1, pp. 75-83 https://doi.org/10.1109/72.554193

Lillesand, T. M., Kiefer, R. W. 2004: Remote Sensing and Image Interpretation. Wiley & Sons, Fifth Edition.

Matheron, G. 1997: Principles of geostatistics, Econ. Geol. 58, 1246-1266. https://doi.org/10.2113/gsecongeo.58.8.1246

Marino, C. M., Panigada, C., Busetto, L., Galli, A., Boschetti M. 2000: Environmental applications of airborne hyperspectral remote sensing: asbestos concrete sheeting identification and mapping. Proc. of the 14th International Conference and Workshops on Applied Geologic Remote Sensing, Aug. 2000.

Plaza, A., Martinez, P., Perez, R., Plaza, J. 2003: A New Meted for Target Detection in Hyperspectral Imagery Based on Extended Morphological Profiles. Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium CD Rom:, Toulouse, France July 21-25, 2003, IEEE Publication, NY, 2003.

Ramstein, G., Raffy, M. 1989: Analysis of the structure of radiometric remotely-sensed images. International Journal of Remote Sensing 10, 1049-1073 https://doi.org/10.1080/01431168908903944

Richards, J. A. 2005: Analysis of remotely sensed data: the formative decades and the future. IEEE Trans. Geosci. Remote Sensing, vol. 43, no.3, pp. 422-432 https://doi.org/10.1109/TGRS.2004.837326

Richards, J. A., Jia, X. 2006: Remote Sensing Digital Image Analysis An Introduction 4th ed. Springer https://doi.org/10.1007/3-540-29711-1

Serra, J. P. 1989: Image analysis and mathematical morphology. International Journal of Remote Sensing 10, 1049-1073. https://doi.org/10.1080/01431168908903944

Soille, P. 2003: Morphological Image Analysis: Principles and Applications. 2nd Edition, Springer Verlag, Berlin https://doi.org/10.1007/978-3-662-05088-0

Srinivasan, A. 1991: An artificial intelligence approach to the analysis of multiple information sources in remote sensing. Ph.D. thesis, Univ. New South Wales, School of Elect. Eng., Kensington, Australia

Srinivasan, A., Richards, J. A. 1993: Analysis of GIS spatial data using knowledge-based methods, Int. J. Geograph. Inf. Syst., vol. 7, no. 6, pp. 479-500 https://doi.org/10.1080/02693799308901978

Vermote, E. F., Tanre, D., Deuze, J. L., Herman, M., Morcrette, J. J. 1997: Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Transactions on Geoscience and Remote Sensing, 35 3: 675-686 May 1997. https://doi.org/10.1109/36.581987

Woodcock, C. E., Strahler, A. H., Jupp, D. L. B. 1988: The use of semivariogram in remote sensing and simulated images: Real digital images. Rem. Sens. Environments 25, 349-379 https://doi.org/10.1016/0034-4257(88)90109-5

Veröffentlicht

2009-07-24

Ausgabe

Rubrik

Cikkek

Zitationsvorschlag

Perspectives of hyperspectral data application for vegetation studies. (2009). TÁJÖKOLÓGIAI LAPOK | JOURNAL OF LANDSCAPE ECOLOGY , 7(1), 81-89. https://doi.org/10.56617/tl.4090

Ähnliche Artikel

1-10 von 76

Sie können auch eine erweiterte Ähnlichkeitssuche starten für diesen Artikel nutzen.