Agyagos vályog barna erdőtalaj változó szerves szén dinamikája és a biológiai aktivitása kommunális szennyvíziszap alkalmazásával

Szerzők

  • Hosam E. A. F. Bayoumi Hamuda Óbudai Egyetem, Rejtő Sándor Könnyűipari és Környezetmérnöki Kar, Környezetmérnöki Intézet. 1034 Budapest, Doberdó u. 6.

DOI:

https://doi.org/10.56617/tl.3718

Kulcsszavak:

lucerna növekedés, biokémiai és mikrobiális tevékenység, települési szennyvíz, talajminőség

Absztrakt

Üvegházas tenyészedény kísérlet történt két települési szennyvíziszap hatásainak vizsgálatára, a szervesszén-dinamika, a mikrobiális populáció, az enzim-aktivitás és a lucerna növekedés változására vonatkozóan a szennyvíziszap nehézfém- és tápanyag-kibocsátásával kapcsolatban agyagos vályog barna erdőtalajon. A települési szennyvíziszap-kezelés növeli a talaj szervesanyag-tartalmát, és javítja a talaj szerkezetét. A nagy nehézfém tartalmú kommunális szennyvíziszap jelentősen csökkentette a talaj biológiai produktivitását, rontotta a biokémiai tulajdonságait, és csökkentette a mikrobiális tartalmát szemben az alacsony nehézfémtartalmú települési szennyvíziszappal. Az összes lucerna szárazanyag-hozam és nitrogén-tartalom lineárisan nő a növekvő kommunális szennyvíziszap kijuttatással. A 40 és 60% települési szennyvíziszappal kezelt talajon a termés szárazanyag-tartalma és a mikrobiális enzimatikus aktivitása nagyobb volt, mint a kontrollé. Összességében, az eredmények azt mutatják, hogy az alacsony nehézfémtartalmú települési szennyvízzel történő kezelés javíthatja a talaj minőségét és a talaj biológiai és biokémiai tulajdonságait.

Információk a szerzőről

  • Hosam E. A. F. Bayoumi Hamuda , Óbudai Egyetem, Rejtő Sándor Könnyűipari és Környezetmérnöki Kar, Környezetmérnöki Intézet. 1034 Budapest, Doberdó u. 6.

    hosameaf@gmail.com

Hivatkozások

Abusuwar, O.A., El Zilal, A.H. 2010: Effect of chicken manure on yield, quality and HCN concentration of two forage Sorghum (Sorghum bicolor (L.) Moench) cultivars. Agric. Biol. J. N. Am., 1: 27–31.

Ahmed, Kh.H., Fawy, A.H., Abdel-Hady, E.S. 2010: Study of sewage sludge use in agriculture and its effect on plant and soil. Agric. Biol. J. N. Am., 1: 1044–1049. https://doi.org/10.5251/abjna.2010.1.5.1044.1049

Alef, K. 1995: Estimation of soil respiration. In: Methods in Applied Microbiology and Biochemistry. Alef K., Nannipieri P. (Eds.), 215–216. Academic Press, London.

Allen, O.N. 1959: Experiments in soil bacteriology, 3rd Ed. Burgess Publishing Co., Minneapolis, pp. 117.

Arshad, A.M., Soon, K.Y., Ripmeester, A.J. 2011: Quality of soil organic matter and C storage as influenced by cropping systems in northwestern Alberta, Canada. Nutr. Cycl. Agroecosyst., 89: 71–79. https://doi.org/10.1007/s10705-010-9377-1

Atkinson, D., Watson, C.A. 2000: The research needs of organic agriculture–distinct or just part of agricultural research? The BCPC Conference - Pests & Diseases, 151–158.

Baldock, J.A., Smernik, R.J. 2002: Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Organic Geochem., 33: 1093–1109. https://doi.org/10.1016/S0146-6380(02)00062-1

Banerjee, M.R., BURTON, D.L., DEPOE, S. 1997: Impact of sewage sludge application on soil biological characteristics. Agric. Ecosyst. Environ., 66: 241–249. https://doi.org/10.1016/S0167-8809(97)00129-1

Barral, M.T., Paradelo, R., Moldes, A.B., Dominguez, M., Diaz-Fierros, F. 2009: Utilization of MSW compost for organic matter conservation in agricultural soils of N.W. Spain. Res. Conserv. Recycl., 53: 529–534. https://doi.org/10.1016/j.resconrec.2009.04.001

Basta, N.T., Ryan, J.A., Chaney, R.L. 2005: Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. J. Environ. Qual., 34: 49–63. https://doi.org/10.2134/jeq2005.0049dup

Bastida, F., Kandeler, E., Hernández, T., García, C. 2008: Long-term effect of municipal solid waste amendment on microbial abundance and humus-associated enzyme activities under semiarid conditions. Microb. Ecol., 55: 651–661. https://doi.org/10.1007/s00248-007-9308-0

Belyaeva, O.N., Haynes, R.J., Birukova, O.A. 2005: Barley yield and soil microbial and enzyme activities as affected by contamination of two soils with lead, zinc or copper. Biol. Fertil. Soils, 41: 85–94. https://doi.org/10.1007/s00374-004-0820-9

Bhattacharyya, P., Pal, R., Chakraborty, A., Chakrabarti, K. 2001: Microbial biomass and activity in a laterite soil amended with municipal solid waste compost. J. Ind. Soc. Soil Sci., 49: 98–104.

Bolan, N.S., Ko, B.G., Anderson, C.W.N., Vogeler, I., Mahimairaja, S., Naidu, R. 2008: Manipulating bioavailability to manage remediation of metal contaminated soils. In: Chemical Bioavailability in Terrestrial Environment (Naidu R. et al., Eds.), pp. 657–678. Elsevier, Amsterdam, The Netherlands. https://doi.org/10.1016/S0166-2481(07)32027-8

Bosatta, E., Ĺgren, G. 1993: Theoretical analysis of microbial biomass dynamics in soils. Soil Biol. Biochem., 26: 143–148. https://doi.org/10.1016/0038-0717(94)90206-2

Brown, G.E., Parks, G.A. 2001: Sorption of trace elements on mineral surfaces: Modern perspectives from spectroscopic studies, and comments on sorption in the marine environment. Intern. Geol. Rev., 43: 963–1073. https://doi.org/10.1080/00206810109465060

Bundela, P.S., Gautam, S.P., Pandey, A.K., Awasthi, M.K., Sarsaiya, S. 2010: Municipal solid waste management in Indian cities. Intern. J. Environ. Sci., 1 (4): 591–606.

Carbonell, G., Pro, J., Gómez, N., Babín, M.M., Fernández, C., Alonso, E., Tarazona, J.V. 2009: Sewage sludge applied to agricultural soil: Ecotoxicological effects on representative soil organisms. Ecotoxicol. Environ. Safety, 72: 1309–1319. https://doi.org/10.1016/j.ecoenv.2009.01.007

Celis, H.J., Machuca, H.A., Sandoval, E.M., Morales, C.P. 2011: Biological activity in a degraded alfisol amended with sewage sludge and cropped with yellow serradela (Ornithopus compressus L.). Chilean J. Agric. Res., 71 (1):164–172. https://doi.org/10.4067/S0718-58392011000100020

Chander, K., Brookes, P.C., Harding, S.A. 1995: Microbial biomass dynamics following addition of metal- enriched sewage sludges to a sandy loam soil. Soil Biol. Biochem., 27: 1409–1421. https://doi.org/10.1016/0038-0717(95)00074-O

Chander, K., Dyckmans, J., Joergensen, R.G.J., Meyer, B.G., Raubuch, M. 2001: Different sources of heavy metals and their long-term effects on soil microbial properties. Biol. Fertil. Soils, 34: 241–247. https://doi.org/10.1007/s003740100406

Cook, B.D., Allan, D.L. 1992: Dissolved organic matter in old field soils: total amounts as a measure of available resources for soil mineralization. Soil Biol. Biochem., 24: 1992, 585–594. https://doi.org/10.1016/0038-0717(92)90084-B

Diacono, M., Montemurro, F. 2010: Long-term effects of organic amendments on soil fertility: A review. Agronomy for Sustainable Development, 30: 401–422. https://doi.org/10.1051/agro/2009040

Doran, J.W., Safley, M. 1997: Defining and assessing soil health and sustainable productivity. In ‘Biological Indicators of Soil Health (Eds. PANKHURST E.C., DOUBE M.B., Gupta R. S.V.V.) pp. 1–28. (CAB International: New York.)

Emmerling, C., Liebner, C., Haubold-Rosar, M., Katzur, J., Schröder, D. 2000: Impact of application of organic waste materials on microbial and enzyme activities of mine soils in the Lusatian coal mining region. Plant and Soil, 220: 129–138. https://doi.org/10.1023/A:1004784525209

García, C., Hernández, T., Costa, C., Ceccanti, B., Masciandaro, G. 1993: The dehydrogenase activity of soils an ecological marker in processes of perturbed system regeneration. In: GALLARDO J.F. (Ed.), XI International Symposium of Environmental Biogeochemistry, 89–100.

Goldstein, A.H. 1986: Bacterial solubilization of mineral phosphates: Historical perspective and future prospects. Am. J. Altern. Agric., 1: 51–57. https://doi.org/10.1017/S0889189300000886

Haynes, R.J., Murtaza, G., Naidu, R. 2009: Inorganic and organic constituents and contaminants in biosolids: Implications for land application. Advances in Agronomy, 104: 165–267. https://doi.org/10.1016/S0065-2113(09)04004-8

HENDRICKS, C.W., DOYLE, J.D., HUGLEY, B. 1995: A new solid medium for enumerating cellulose-utilizing bacteria in soil. Appl. Environ. Microbiol., 61: 2016–2019. https://doi.org/10.1128/aem.61.5.2016-2019.1995

Hernandez-Soriano, M.C., Peña, A., Mingorance, M.D. 2013: Soluble metal pool as affected by soil addition with organic inputs. Environ. Toxicol. Chem., 32: 1027–1032. https://doi.org/10.1002/etc.2159

Hettiarachchi, G.M., Ryan, J.A., Chaney, R.L., Lafleur, C.M. 2003: Sorption and desorption of cadmium by different fractions of biosolids-amended soils. J. Environ. Qual., 32: 1684–1693. https://doi.org/10.2134/jeq2003.1684

Ibekwe, A.M., Angle, J.S., Chaney, R.L., Van Berkum, P. 1995: Sewage sludge and heavy metal effects on nodulation and nitrogen menu fixation of legumes. J. Environ. Qual., 24: 1199–1204. https://doi.org/10.2134/jeq1995.00472425002400060021x

Insam, H. 1990: Are the soil microbial biomass and basal respiration governed by climate regime? Soil Biol. Biochem., 22: 525–532. https://doi.org/10.1016/0038-0717(90)90189-7

Iqbal, J., Hu, R., Feng, M., Lin, S., Malghani, S., Ali, M.I. 2010: Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: A case study at Three Gorges Reservoir Area, South China. Agric., Ecosyst. Environ., 137 (3-4): 294–307. https://doi.org/10.1016/j.agee.2010.02.015

Jenkinson, D.S. 1988: Determination of microbial biomass carbon and nitrogen in soil. In: Advances in Nitrogen Cycling in Agricultural Ecosystems (Wilson R.J., Ed.), pp. 368–386. C.A.B. International, Wallingford.

Jordán, M.M., MONTERO, A.M.; PINA, S., GARCÍA-SÁNCHEZ, E. 2009: Mineralogy and distribution of Cd, Ni, Cr, and Pb in biosolids-amended soils from Castellon Province (NE, Spain). Soil Sci., 174: 14–20. https://doi.org/10.1097/SS.0b013e3181957492

Karpukhin, M., Ladonin, D. 2008: Effect of soil components on the adsorption of heavy metals under technogenic contamination. Eurasian Soil Sci., 41: 1228–1237. https://doi.org/10.1134/S1064229308110124

Keeney, D.R., Nelson, D.W. 1982: Nitrogen-inorganic forms. In: Methods of soil analysis. Page, A.L., Miller, R.H., Keeney, D.R. (Eds.) 643–698. American Society of Agronomy, Madison. https://doi.org/10.2134/agronmonogr9.2.2ed.c33

Kranert, M., Hafner, G., Berkner, I., Erdin, E. 2008: Compost from sewage sludge – a product with quality assurance system. Water Practice & Technol., 3 (1): 1–8. https://doi.org/10.2166/wpt.2008.008

KWON, J.S., YUN, S.T., LEE, J.H., KIM, S.O., Jo, H.Y. 2010: Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic (III) from aqueous solutions using scoria: Kinetics and equilibria of sorption. J. Hazardous Materials, 174: 307–313. https://doi.org/10.1016/j.jhazmat.2009.09.052

Lair, G., Gerzabek, M., Haberhauer, G. 2007: Sorption of heavy metals on organic and inorganic soil constituents. Environ. Chem. Lett., 5: 23–27. https://doi.org/10.1007/s10311-006-0059-9

Lamb, D.T., Ming, H., Megharaj, M., Naidu, R. 2009: Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. J. Hazardous Materials, 171: 1150–1158. https://doi.org/10.1016/j.jhazmat.2009.06.124

Leita, L., De Nobili, M., Mondini, C., Muhlbachova, G., Marchiol, L., Bragato, G., Contin, M. 1999: Influence of inorganic and organic fertilization on soil microbial biomass, metabolic quotient and heavy metal bioavailability. Biol. Fertil. Soils, 28: 371–376. https://doi.org/10.1007/s003740050506

Li, Z., Zhou, L. 2010: Cadmium transport mediated by soil colloid and dissolved organic matter: A field study. J. Environ. Sci., 22: 106–115. https://doi.org/10.1016/S1001-0742(09)60081-4

Mantovi, P. Baldoni, G., Toderi, G. 2005: Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop. Water Res., 39: 289–296. https://doi.org/10.1016/j.watres.2004.10.003

MARTIN, J.P. 1950: Use of acid, rose Bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci., 69: 215–232. https://doi.org/10.1097/00010694-195003000-00006

Masciandaro, G., Ceccanti, B., García, C. 1994: Anaerobic digestion of straw and pig wastewater: II. Optimization of the process. Agrochimica, 3: 195–203.

Mcgrath, S.P., Chang, A.C., Page, A.L., Witter, E. 1994: Land application of sewage sludge: scientific perspectives of heavy metal loading limits in Europe and the United States. Environ. Rev. 2: 108–118. https://doi.org/10.1139/a94-006

Mudgal, V., Madaan, N., Mudgal, A. 2010: Heavy metals in plants: phytoremediation: Plants used to remediate heavy metal pollution. Agric. Biol. J. N. Am., 1: 40–46.

Nachimuthu, G., King, K., Kristiansen, P., Lockwood, P., Guppy, C. 2007: Comparison of methods for measuring soil microbial activity using cotton strips and a respirometer. J. Microbiol. Meth., 69: 322–329. https://doi.org/10.1016/j.mimet.2007.02.002

Nannipieri, P., Sequi, P., Fusi, P. 1996: Humus and enzyme activity. In: Humic substances in terrestrial ecosystems. Piccolo A. (Ed.) 293–328. Elsevier, Amsterdam. https://doi.org/10.1016/B978-044481516-3/50008-6

Nannipieri, P., Ceccanti, B., Cervelli, S., Matarese, E. 1980: Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil. Soil Sci. Soc. Am. J., 44: 1011–1016. https://doi.org/10.2136/sssaj1980.03615995004400050028x

Nwuche, C., Ugoji, E. 2008: Effects of heavy metal pollution on the soil microbial activity. Intern. J. Environ. Sci. Technol., 5: 409–414. https://doi.org/10.1007/BF03326036

Page, A.L., Chang, A.C. 1994: Overview of the past 25 years: technical perspectives. In: Sewage Sludge: Land Utilization and the Environment. Clapp, C.E., Larson, R.H., Dowdy, R.H. (Eds.), 3–6. Soil Sci. Soc. Am. Miscellaneous Publ., Madison, WI.

Paz-Ferreiro, J., Gascó, G., Gutiérrez, B., Méndez, A. 2012: Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol. Fertil. Soils, 48 (5): 511–517. https://doi.org/10.1007/s00374-011-0644-3

Peckenham, J.M., Nadeau, J.A., Amirbahman, A., Behr, R.S. 2008: Release of nitrogen and trace metal species from field stacked biosolids. Waste Management and Res., 26: 163–172. https://doi.org/10.1177/0734242X07082138

Roig, N., Sierra, J., Martí, E., Nadal, M., Schuhmacher, M., Domingo, L.J. 2012: Long-term amendment of Spanish soils with sewage sludge: Effects on soil functioning. Agric., Ecosyst. Environ., 158: 41–48. https://doi.org/10.1016/j.agee.2012.05.016

Renato, A., Rocio, V., Jorge, L., Del Aguila, P. 2012: Microbiological and biochemical properties of an agricultural Mexican soil amended with sewage sludge. R. Bras. Ci. Solo, 36: 1646–1655. https://doi.org/10.1590/S0100-06832012000500029

Roca-Perez, L., Martinez, C., Marcilia, P., Boluda, R. 2009: Composting rice straw with sewage sludge and compost effects on the soil-plant system. Chemosphere, 75: 781–787. https://doi.org/10.1016/j.chemosphere.2008.12.058

Saha, J., Panwar, N., Srivastava, A., Biswas, A., Kundu, S., Rao, A.S. 2010: Chemical, biochemical, and biological impact of untreated domestic sewage water use on Vertisol and its consequences on wheat (Triticum aestivum) productivity. Environ. Monitoring and Assessment. 161: 403–412. https://doi.org/10.1007/s10661-009-0756-5

Sánchez-Monedero, A.M., Mondini, C., De Nobili, M., Leita, L., Roig, A. 2004: Land application of biosolids. Soil response to different stabilization degree of the treated organic matter. Waste Management, 24 (4): 325–332. https://doi.org/10.1016/j.wasman.2003.08.006

Schulz, E., Körchens, M. 1998: Characterization of the decomposable part of soil organic matter (SOM) and transformation processes by hot water extraction. Eurosian Soil Sci., 31: 809–813.

Singh, P.R., Agrawal, M. 2007: Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere, 67 (11): 2229–2240. https://doi.org/10.1016/j.chemosphere.2006.12.019

Singh, R.P., Agrawal, M. 2008: Potential benefits and risks of land application of sewage sludge. Waste Manag., 28: 347–358. https://doi.org/10.1016/j.wasman.2006.12.010

SIMS, J.R., HABY, V.A. 1971: Simplified colorimetric determination of soil organic matter. Soil Sci., 112: 137–141. https://doi.org/10.1097/00010694-197108000-00007

Skujins, J. 1976: Extracellular enzymes in soil. Crit. Rev. Microbiol., 4: 383–421. https://doi.org/10.3109/10408417609102304

Stockdale, E., Brookes, P. 2006: Detection and quantification of the soil microbial biomass–impacts on the management of agricultural soils. J. Agric. Sci., 144: 285–302. https://doi.org/10.1017/S0021859606006228

Swift, M.J., Palm, C.A. 2000: Soil fertility as an ecosystem concept: A paradigm lost or regained? In: Accomplishments and changing paradigm towards the 21st Century.

Tabatabai, M.A., Bremner, J.M. 1970: Factors affecting soil aryl-sulphate activity. Soil Sci. Soc. Am. Proc., 34: 427–429. https://doi.org/10.2136/sssaj1970.03615995003400030023x

Vance, E.D., Brookes, P.C., Jenkinson, D.S. 1987: Microbial biomass measurements in forest soils: determination of Kc values and test of hypothesis to explain the failure of the chloroform fumigation- incubation method in acid soils. Soil Biol. Biochem., 19: 381–387. https://doi.org/10.1016/0038-0717(87)90050-2

Violante, A., Cozzolino, V., Perelomov, L., Caporale, A., Pigna, M. 2010: Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil Sci. Plant Nutr., 10: 268–292. https://doi.org/10.4067/S0718-95162010000100005

Walkley, A., Black, I.L. 1934: An examination of the Degtjareff method for determining soil organic matter and proposed determination of the chromic acid titration method. Soil Sci., 37: 1934, 29–38. https://doi.org/10.1097/00010694-193401000-00003

Wild, A. 1993: Soils and the environment. An introduction. Cambridge University Press, Cambridge, UK.

Yao, H., Xu, J., Huang, C. 2003: Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal–polluted paddy soils. Geoderma, 115: 139–148. https://doi.org/10.1016/S0016-7061(03)00083-1

Zafar, S., Aqil, F., Ahmad, Q. 2007: Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technol., 98: 2557–2561. https://doi.org/10.1016/j.biortech.2006.09.051

Zuhairi, W.Y.W. 2003: Sorption capacity on lead, copper and zinc by clay soils from South Wales, United Kingdom. Environmental Geology, 45: 236–242. https://doi.org/10.1007/s00254-003-0871-5

Letöltések

Megjelent

2014-12-30

Folyóirat szám

Rovat

Cikkek

Hogyan kell idézni

Agyagos vályog barna erdőtalaj változó szerves szén dinamikája és a biológiai aktivitása kommunális szennyvíziszap alkalmazásával. (2014). TÁJÖKOLÓGIAI LAPOK | JOURNAL OF LANDSCAPE ECOLOGY , 12(2), 327-344. https://doi.org/10.56617/tl.3718

Hasonló cikkek

441-450 a 493-ból/ből

You may also Haladó hasonlósági keresés indítása for this article.