Design and Calibration of a Micro-controller System Suitable for Greenhouse Climate Control

Authors

  • Kristóf Horváth Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus
  • Miklós Lönhárd Magyar Agrár- és Élettudományi Egyetem, Műszaki Intézet, Agrárműszaki Tanszék, Georgikon Campus

Keywords:

precision farming, weather station, climate control, sensors, microcontroller

Abstract

The authors’ aim is to show that the IoT-connected or analogue memory-based measuring stations and controllers that are in vogue in Agriculture 4.0 can be created by anyone at home, task-specifically and economically, as an alternative to the more expensive measuring instruments produced by large companies. Our work has resulted in a measurement data logger system that, in its current state, is capable of measuring air temperature and relative humidity and storing the measurement data. After testing and calibrating the data logger, we found that it is comparable in accuracy to other products on the market, and is flexible, expandable and customisable. By incorporating switch-mode transistors and adding program code, this device could form the basis of a climate control automation system used in many areas of agriculture, such as modern greenhouses, foil tents, stables or warehouses.

Author Biographies

  • Kristóf Horváth, Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus

    horvath.kristof@stud.uni-mate.hu

  • Miklós Lönhárd, Magyar Agrár- és Élettudományi Egyetem, Műszaki Intézet, Agrárműszaki Tanszék, Georgikon Campus

    correspondence
    lonhard.miklos@uni-mate.hu

References

Agrios, G. N. 2005. Plant Pathology Fifth Edition, Elsevier Academic Press.

Ahston, K. 1999. Presentation at Procter & Gamble (P&G), https://www.rfidjournal.com/that-internet-of-things-thing

Akila, A., Shalini, P. 2018. Food grain storage management system, International Journal of Engineering & Technology. 7 (2.31) 170–173. https://doi.org/10.14419/ijet.v7i2.31.13433

Allen, R.G., Pereira, L.S., Raes, D., Smith, M. 2006. Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements). FAO Irrigation and Drainage Paper No. 56.

Antle, J. M., Stoorvogel J. J. 2008. Agricultural carbon sequestration, poverty, and sustainability, Environment and Development Economics. Cambridge University Press, 13 (3) 327–352, June. https://doi.org/10.1017/S1355770X08004324

Dzvene, A. R., Tesfuhuney, W., Walker, S., Ceronio, G. 2023. Optimizing the planting time and stand density of sunn hemp intercropping for biomass productivity and competitiveness in a maize-based system. https://doi.org/10.1016/j.fcr.2023.109179

Evans, B. W. 2008. Arduino Programming Notebook Second Edition, Creative Commons, San Francisco, USA

Gáspár, I. 2023. 3D nyomtatás elméleti alapok kezdőknek, oktatási előadásanyag, MATE, Élelmiszeripari Műveletek és Folyamattervezés Tanszék

Jones, H. G. 2013. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. https://doi.org/10.1017/CBO9780511845727

Lobell, D. B., Gourdj, S. M. 2012. The Influence of Climate Change on Global Crop Productivity. Plant Physiology. 160 (4) 1686–1697 https://doi.org/10.1104/pp.112.208298

Margolis, M. 2011. Arduino Cookbook, ISBN 978-0-596-80247-9

Monsalve, J. S., Arnold D., Yi, W., Saniie, J. 2019. Design Flow of Wearable Internet of Things (IoT) Smart Workout Tracking System. https://doi.org/10.1109/EIT.2019.8833917

Muñoz-Carpena, R. C., Lauvernet, C., Carluer, N., Fox, G. A. 2021. Comment on ‘Modeling slope rainfall-infiltration-runoff process with shallow water table during complex rainfall patterns’ by Wu et al. Journal of Hydrology X. 13, 100133. https://doi.org/10.1016/j.hydroa.2021.100113

Sivakumar, M. V. K. 2018. Climate Extremes and Impacts on Agriculture. https://doi.org/10.2134/agronmonogr60.2016.0003

Sun, Y. - Ip, P. S. - Jones, M. - Wang, J. J. 2021. Determinants of Animal Welfare Disclosure Practices: Evidence from China. https://doi.org/10.3390/su13042200

Taiz, L., Zeiger, E. 2010. Plant Physiology. 5th Edition, Sinauer Associates Inc.

Wataru, Y., Kouki, H., Way, D. A. 2013. Temperature response of photosynthesis in C3, C4, and CAMplants: temperature acclimation and temperature adaptation. https://doi.org/10.1007/s11120-013-9874-6

Wheeler, E. F. 2009. Ammonia monitoring in animal environments using simple instruments. Agricultural and Biological Engineering Fact Sheet G-110, The Pennsylvania State University, University Park, Penn.

http1: https://extension.psu.edu/new-penn-state-dairy-idea-plans-feature-automatic-milking-systems

http2: https://www.microchip.com/en-us/product/atmega328

Published

2024-06-28