Development of in vitro fish digestionmodels to promote the sustainibility of fish breeding
Keywords:
fish feed, in vitro digestion modelAbstract
The amino acid and fatty acid composition of feed influences the sensory and technological properties of fish meat. The protein content of feed is very important, because animals, including fish, can build up the proteins in their body only from proteins. Fish have to gather several amino acids from the feed, because their organism is not able to synthesise them. Animal- and plant-based protein sources of feed contain the different amino acids in various proportions, and the digestibility of each protein is different. Good digestibility, sustainable and economical availability are required for fish feed. Researchers are trying to improve the biological value of feeds by involving new, alternative protein-rich feed materials (e.g. insect flour) in order to achieve proper growth of fish and improve fish quality. The goal is to develop in vitro fish digestion models to verify the quality of fish feed, which will be a big challenge for researchers. The great diversity of fish species, the complexity of the digestive process, the variety of factors that influence digestion, and the implementation of the in vivo physiological conditions are extremely difficult tasks
References
Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunçăo, R.,... & Recio, I. (2019): INFOGEST Static In Vitro Simulation of Gastrointestinal Food Digestion. Nature Protocols, 14(4):991–1014. https://doi.org/10.1038/s41596-018-0119-1
Hancz, Cs. (2011): Haltakarmányozás. https://docplayer.hu/3203439-Haltakarmanyozas-hancz-csaba.html, Hozzáférés időpontja: 2022.04.20.
Haug, A., Rřdbotten, R. Torunn Mydland, L. Christophersen, O.A. (2008): Increased broiler muscle carnosine and anserine following histidine supplementation of commercial broiler feed concentrate. Acta Agriculturae Scandinavica, 58:71- 77. https://doi.org/10.1080/09064700802213545
Henry, M., Gasco, L., Piccolo, G. & Fountoulaki, E. (2015): Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology 203:1-22. https://doi.org/10.1016/j.anifeedsci.2015.03.001
Kumar, V., Wang, H., Lalgudi, R.S., Mcgraw, B., Cain, R., Rosentrater, K.A. (2019): Processed soybean meal as an alternative protein source for yellow perch(Perca flavescens) feed. Aquaculture Nutrition. 25,:917– 931. https://doi.org/10.1111/anu.12911
Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carričre, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A., Marze, S., McClements, D.J., Ménard, O., Recio, I., Santos, C.N., Singh, R.P., Vegarud, G.E., Wickham, M.S.J., Weitschies, W. & Brodkorb, A. (2014): A standardised static in vitro digestion method suitable for food – an international consensus. Food & Function, 5(6):1113–1124. https://doi.org/10.1039/c3fo60702j
Moyano, F.J, de Rodriganez, M.A.S., Diaz, M., Tacon, A.G.J. (2015): Application of in vitro digestibility methods in aquaculture: constraints and perspectives. Reviews in Aquaculture, 7(4):223- 242. https://doi.org/10.1111/raq.12065
Mulet-Cabero, A.I. , Egger, L., Portmann, R., Ménard, O., Marze, S., Minekus, M., Le Feunteun, S., Sarkar, A., Grundy, M.M., Carričre, F., Golding, M., Dupont, D., Recio, I., Brodkorb, A., Mackie, A. (2020): A standardised semi-dynamic in vitro digestion method suitable for food - an international consensus. Food Funct, 11(2):1702-1720. https://doi.org/10.1039/c9fo01293a
Olsson, C. (2011): The Gut. Gut anatomy and morphology. In: Encyclopedia of fish physiology. From genome to environment. (Szerk. Farrell, A.P., Stevens, E.D., Cech, J.J., Richard,s J.G.) Elsevier, London, Waltham, San Diego, pp. 1268-1275. https://doi.org/10.1016/b978-0-12-374553-8.00071-x
Rust, M.B. (2002): Nutritional Physiology. In: Fish Nutrition. (Szerk. Halver, J.E., Harry, R.W.) Academic Press, San Diego, London, pp. 367-417. https://doi.org/10.1016/b978-012319652-1/50008-2
Toviho O.A., Bársony P. (2020): Insect based-protein: A new opportunity in animal nutrition. Acta Agraria Debreceniensis, 1:129-138. https://doi.org/10.34101/actaagrar/1/3744
Wang, R., Mohammadi, M., Mahboubi, A., Taherzadeh, M.J. (2021): In-vitro digestion models: a critical review for human and fish and a protocol for in-vitro digestion in fish. Bioengineered, 12(1):3040-3064. https://doi.org/10.1080/21655979.2021.1940769
Wulff, T., Petersen, J., Nřrrelykke, M.R., Jessen, F., Nielsen, H.H. (2012): Proteome analysis of pyloric ceca: a methodology for fish feed development? Journal of Agricultural and Food Chemistry, 60(34):8457-64. https://doi.org/10.1021/jf3016943
Wood, J.D., Richardson, R.I., Nute, G.R., Fisher, A.V., Campo, M.M., Kasapidou, E., Sheard, P.R., Enser, M. (2004): Effects of fatty acids on meat quality: a review. Meat Science 66:21-32. https://doi.org/10.1016/s0309-1740(03)00022-6
Yasumaru, F., Lemos, D. (2014): Species specific in vitro protein digestion (pH-stat) for fish: method development and application for juvenile rainbow trout (Oncorhynchus mykiss), cobia (Rahycentron canadum), and Nile tilapia (Oreochromis niloticus). Aquaculture, 426-427:74-84. https://doi.org/10.1016/j.aquaculture.2014.01.012
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Antal Otilia Tamara, Nagy András, Takács Krisztina
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.