Yield stability of winter wheat in intercrop makes better adaptation to climate conditions

Authors

  • Marianna Vályi Nagy Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, 2100 Gödöllő, Corresponding author, e-mail: Valyi-Nagy.Marianna@uni-mate.hu
  • Melinda Tar Faculty of Agriculture, Institute of Plant Sciences and environmental Protection, University of Szeged, Andrássy út 15, 6800 Hódmezővásárhely
  • Attila Rácz Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, 2100 Gödöllő
  • Katalin Irmes Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, 2100 Gödöllő
  • István Kristó Cereal Research Non-Profit Ltd., Alsókikötő sor 9, 6726 Szeged

DOI:

https://doi.org/10.18380/SZIE.COLUM.2023.10.2.25

Keywords:

intercrop, climate change, yield advantage, crop failure

Abstract

Global climate change is a main issue today. Negative effects, such as gradual warming, annual precipitation decrease and frequences of extreme meteorological events have also felt in Hungary. These effects significally tested the adaptive capacity of our cultivated plants. In our country two-thirds of the arable land is occupied by cereals. In most cases there is no crop rotation, pre-crop effect remains unused. Intercrop is a special kind of plant association, where two or more crops growing simultaneously on the same field. It can be increases resilience against pest and pesticides, provides better utilization of growth resources, and weed suppression. In mixture mitigate the effects of climate. Our experiments were made in 2020/2021 with 3 winter wheat varieties (GK Szilárd, Celulle, GK Csillag) and a winter pea variety (Aviron) in 4 repeats, on 10 square meter random layout plots in Szeged-Öthalom. We set 3 different seed density in every variety in every combination. Higher seed density of wheat makes higher yield regardless of pea, except of GK Csillag at 75% seed density of wheat and pea. Increasing pea ratio in mixture, wheat yield decreased. In contrast GK Szilárd and Cellule, their 75% and 100% mixture with 75% Aviron achieved higher wheat yield. Pure stands have shown better values than the combined ones, vice versa for GK Csillag: every seed density with 50% of Aviron gaves the highest wheat yield. Wheat and pea yield together gives the yield advantage what intercrop provides.

References

Antal, J. (2005). Növénytermesztéstan 1. Budapest: Mezőgazda Kiadó.

Bedoussac, L., Journet, E.-P., Hauggaard-Nielsen, H., Naudin, C., Corre-Hellou, G., Jensen, E. S., . . . Justes, E. (2015). Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agronomy for Sustainable Devel- opment 35(3), 911-935. doi: https://doi.org/10.1007/s13593-014-0277-7

Bedoussac, L., & Justes, E. (2011). A comparison of commonly used indices for evaluat- ing species interactions and intercrop efficiency: Application to durum wheat–winter pea intercrops. Field Crops Research 124(1), 25-36. doi: https://doi.org/10.1016/j.fcr.2011.05.025

Divéky-Ertsey, A., Gál, I., Madaras, K., Pusztai, P., & Csambalik, L. (2022). Contribu- tion of Pulses to Agrobiodiversity in the View of EU Protein Strategy. Stresses 2(1), 90-112. doi: https://doi.org/10.3390/stresses2010008

Fujita, K., Ofosu-Budu, K. G., & Ogata, S. (1992). Biological nitrogen fixation in mixed legume-cereal cropping systems. Plant and Soil 141(1), 155-175. doi: https://doi.org/10.1007/BF00011315

Gollner, G., Starz, W., & Friedel, J. K. (2019). Crop performance, biological N fixation and pre-crop effect of pea ideotypes in an organic farming system. Nutrient Cycling in Agroecosystems 115(3), 391-405. doi: https://doi.org/10.1007/s10705-019-10021-4

Hauggaard-Nielsen, H., Andersen, M., Jørnsgaard, B., & Jensen, E. (2006). Density and relative frequency effects on competitive interactions and resource use in pea–barley intercrops. Field Crops Research 95(2), 256-267. doi: https://doi.org/10.1016/j.fcr.2005.03.003

Jolankai, M., & Birkás, M. (2007). Global climate change impacts on crop production in Hungary. Agriculturae Conspectus Scientificus 72(1), 17-20.

Justes, E., Bedoussac, L., Dordas, C., Frak, E., Louarn, G., Boudsocq, S., . . . Li, L. (2021). The 4C approach as a way to understand species interactions determining intercropping productivity. Frontiers of Agricultural Science and Engineering 8(3), 387-399. doi: https://doi.org/10.15302/J-FASE-2021414

Kristó, I., Tar, M., Irmes, K., Vályi-Nagy, M., & Szalai, D. (2020a). Különböző gyomsz- abályozási technológiák fitotoxikus hatása a takarmányborsó terméselemeire és fehérjetartalmára. In A. Haltrich & Á. Varga (Eds.), 66. Növényvédelmi Tudományos Napok (p. 76). Budapest: Magyar Növényvédelmi Társaság.

Kristó, I., Vályi-Nagy, M., Jancsó, K., Irmes, K., Rácz, A., & Tar, M. (2020b). Egy lehetőség a fehérje növények vetésterületének növelésére. In K. Kiss, L. Komarek, & T. Monostori (Eds.), Mezőgazdasági és Vidékfejlesztési kutatások a jövő szolgálatában (p. 147-156). Szeged: Innovariant Nyomdaipari Kft.

Księżak, J., Staniak, M., & Stalenga, J. (2023). Restoring the Importance of Cereal-Grain Legume Mixtures in Low-Input Farming Systems. Agriculture 13(2), 341. doi: https://doi.org/10.3390/agricul- ture13020341

Lithourgidis, A., Dordas, C., Damalas, C. A., & Vlachostergios, D. (2011). Annual intercrops: an alternative pathway for sustainable agriculture. Australian Journal of Crop Science 5(4), 396-410.

Naudin, C., van der Werf, H. M., Jeuffroy, M.-H., & Corre-Hellou, G. (2014). Life cycle assessment applied to pea-wheat intercrops: A new method for handling the impacts of co-products. Journal of Cleaner Production 73(1), 80-87. doi: https://doi.org/10.1016/j.jclepro.2013.12.029

Nelson, W., Siebrecht-Schöll, D., Hoffmann, M., Rötter, R., Whitbread, A., & Link, W. (2021). What determines a productive winter bean-wheat genotype combination for intercropping in central Germany? European Journal of Agronomy 128(1), 126294. doi: https://doi.org/10.1016/j.eja.2021.126294

Neugschwandtner, R. W., Bernhuber, A., Kammlander, S., Wagentristl, H., Klimek-Kopyra, A., Lošák, T., . . . Kaul, H.-P. (2021). Nitrogen Yields and Biological Nitrogen Fixation of Winter Grain Legumes. Agronomy 11(4), 681. doi: https://doi.org/10.3390/agronomy11040681

Neugschwandtner, R. W., Kaul, H.-P., Moitzi, G., Klimek-Kopyra, A., Lošák, T., & Wagen- tristl, H. (2021). A low nitrogen fertiliser rate in oat–pea intercrops does not impair N2 fixa- tion. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 71(3), 182–190. doi: https://doi.org/10.1080/09064710.2020.1869819

Neumann, A., Schmidtke, K., & Rauber, R. (2007). Effects of crop density and tillage system on grain yield and N uptake from soil and atmosphere of sole and intercropped pea and oat. Field Crops Research 100(2), 285-293. doi: https://doi.org/10.1016/j.fcr.2006.08.001

Pankou, C., Lithourgidis, A., & Dordas, C. (2021). Effect of Irrigation on Intercropping Systems of Wheat (Triticum aestivum L.) with Pea (Pisum sativum L.). Agronomy 11(2), 283. doi: https://doi.org/10.3390/agronomy11020283

Pelzer, E., Bazot, M., Makowski, D., Corre-Hellou, G., Naudin, C., Al Rifaï, M., . . . Jeuf- froy, M.-H. (2012). Pea–wheat intercrops in low-input conditions combine high economic per- formances and low environmental impacts. European Journal of Agronomy 40(1), 39-53. doi: https://doi.org/10.1016/j.eja.2012.01.010

Pepó, P., & Sárvári, M. (2011). Gabonanövények termesztése. Agrármérnöki MsC szak tananyagfejlesztése. TÁMOP-4.1.2-08/1/A-2009-0010 Projekt. Debrecen: Debreceni Egyetem.

Thilakarathna, M. S., McElroy, M. S., Chapagain, T., Papadopoulos, Y. A., & Raizada, M. N. (2016). Belowground nitrogen transfer from legumes to non-legumes under managed herbaceous cropping systems. A review. Agronomy for Sustainable Development 36(4), 58. doi: https://doi.org/10.1007/s13593-016-0396-4

Voisin, A.-S., Guéguen, J., Huyghe, C., Jeuffroy, M.-H., Magrini, M.-B., Meynard, J.-M., . . . Pelzer, E. (2014). Legumes for feed, food, biomaterials and bioenergy in Europe: a review. Agronomy for Sustainable Development 34(2), 361-380. doi: https://doi.org/10.1007/s13593-013-0189-y

Willey, R. (1990). Resource use in intercropping systems. Agricultural Water Management 17(1), 215-231. doi: https://doi.org/10.1016/0378-3774(90)90069-B

Downloads

Published

2023-12-29

Issue

Section

Article

How to Cite

Yield stability of winter wheat in intercrop makes better adaptation to climate conditions. (2023). COLUMELLA – Journal of Agricultural and Environmental Sciences, 10(2), 25-35. https://doi.org/10.18380/SZIE.COLUM.2023.10.2.25

Similar Articles

51-60 of 79

You may also start an advanced similarity search for this article.