Effect of heat treatment on chemical and sensory properties of honeys
DOI:
https://doi.org/10.17205/SZIE.AWETH.2017.2.039Keywords:
honey, heat treatment, physicochemical propertiesAbstract
Honey has been widely used since the ancient times. Due to its high nutritional value and its high price honey has become a target of adulteration. Several methods are applied for committing frauds. For some beekeepers and distributors it is a common practice to heat honey for elimination of crystallization, which is generally not desired by consumers. Nevertheless, during heat treatment the chemical composition changes, leading to a decrease in the amount of some components like vitamins, antioxidant components and enzymes, while some unwanted compounds like hydroxymethyl-furfural (HMF) are formed. HMF is also produced during long time storage at room temperature, but heating promotes this process. In our research the effect of heat treatment was studied on different chemical, physical and sensory properties of honeys. Linden, acacia, multiflora and sunflower honeys were examined. Three temperature levels - 40 °C, 50 °C, 60 °C- and three time periods – 30, 60, 120 minutes - were applied for the heat treatment. For tracking of the changes colour measurement, near infrared spectroscopy and electronic tongue methods were used. Evaluation of data was performed by uni- and multivariate statistical methods. Samples treated even at 40 °C showed significant differences compared to the control, mainly in ET and NIR results. Furthermore, the effect of the different time periods was also found significant. Results confirmed even heat treatment at 40 °C is detectable with the acquired rapid methods. higher heat treatment cause obvious sensory changes but the applied quick methods are able to trace the effect of minimal heat treatment on the quality of honey.
References
Al-Ghamdi, A., Eldin, S., Mohammed, A., Ansari, M. J., Adgaba, N. (2017): Comparison of physicochemical properties and effects of heating regimes on stored Apis mellifera and Apis florea honey. https://doi.org/10.1016/j.sjbs.2017.06.002
Alpha M.O.S. (2003): αAstree electronic tongue user manual.
Bogdanov, S. (2002): Harmonised methods of the International Honey Commission. International Honey Commission (IHC). Swiss Bee Research Centre, FAM, Liebefeld. Retrieved from http://www.terezinka.cz/vcely/Med/IHCmethods_e.pdf
Czipa, N. (2010): Különböző eredetű mézek összehasonlító vizsgálata és a gyártmánykialakítás hatása a minőségre. Debreceni Egyetem, Hankóczy Jenő Növénytermesztési, Kertészeti és Élelmiszertudományok Doktori Iskola. Retrieved from https://dea.lib.unideb.hu/dea/bitstream/handle/2437/99459/ertekezes.pdf?sequence=5
Csóka, M., Tolnay, P., Szabó, S, A. (2014): Hársméz színjellemzőinek változása hőkezelés hatására, illetve a tárolás során = Alteration in linden honey colour properties by storage and heat treatment. Élelmiszervizsgálati Közlemények, 60(1) 44–49.
El Sohaimy, S. A., Masry, S. H. D., Shehata, M. G. (2015): Physicochemical characteristics of honey from different origins. Annals of Agricultural Sciences, 60(2) 279–287. https://doi.org/10.1016/j.aoas.2015.10.015
Kędzierska-Matysek, M., Florek, M., Wolanciuk, A., Skałecki, P., Litwińczuk, A. (2016): Characterisation of viscosity, colour, 5-hydroxymethylfurfural content and diastase activity in raw rape honey (Brassica napus) at different temperatures. Journal of Food Science and Technology, 53(4) 2092–2098. https://doi.org/10.1007/s13197-016-2194-z
Kesić, A., Zaimović, I., Ibrišimović-Mehmedinović, N., Šestan, A. (2017): The Influence of Thermal Treatment on the Concentration of HMF in Honey. Http://www.sciencepublishinggroup.com, 2. 1. 1. https://doi.org/10.11648/J.IJEC.20170201.11
Magyar Élelmiszerkönyv. (2002): 1-3-2001/110 számú előírás. Méz. (Codex Alimentarius Hungaricus, Ed.). Magyar Élelmiszerkönyv Bizottság. Retrieved from http://elelmiszerlanc.kormany.hu/download/b/15/b1000/132001110_2009.pdf
Magyar Élelmiszerkönyv. (2009): 2-100 számú irányelv Megkülönböztető jelöléssel ellátott mézfélék. (Codex Alimentarius Hungaricus, Ed.) (1.). Magyar Élelmiszerkönyv Bizottság. Retrieved from http://elelmiszerlanc.kormany.hu/download/d/65/50000/2100_2009.pdf
Nicoli, M., Anese, M., Parpinel, M. (1999): Influence of processing on the antioxidant properties of fruit and vegetables. Trends in Food Science & Technology, 10(3) 94–100. https://doi.org/10.1016/S0924-2244(99)00023-0
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999): Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10) 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Tosi, E. A., Ré, E., Lucero, H., Bulacio, L. (2004): Effect of honey high-temperature short-time heating on parameters related to quality, crystallisation phenomena and fungal inhibition. LWT - Food Science and Technology, 37(6) 669–678. https://doi.org/10.1016/j.lwt.2004.02.005
Tosi, E., Martinet, R., Ortega, M., Lucero, H., Ré, E. (2008): Honey diastase activity modified by heating. Food Chemistry, 106(3) 883–887. https://doi.org/10.1016/j.foodchem.2007.04.025
Turkmen, N., Sari, F., Poyrazoglu, E. S., Velioglu, Y. S. (2006): Effects of prolonged heating on antioxidant activity and colour of honey. Food Chemistry, 95(4) 653–657. https://doi.org/10.1016/j.foodchem.2005.02.004
Zábrodská, B., Vorlová, L. (2014): Adulteration of honey and available methods for detection – a review. Acta Veterinaria Brno, 83(10) S85–S102. https://doi.org/10.2754/avb201483S10S85
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Bodor Zsanett, Koncz Fanni Adrienn, John-Lewis Zinia Zaukuu, Kertész István, Gillay Zoltán, Kaszab Tímea, Kovács Zoltán, Benedek Csilla
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.