Neighbourhood Effects on the world maize market between 1996 and 2015

Authors

  • András Bence Szerb Hungarian University of Agricultureand Life Sciences, Doctoral School in Management and Organizational Science
  • Imre Fertő Hungarian University of Agricultureand Life Sciences; Centre for Economic and Regio-nal Studies
  • Arnold Csonka Hungarian University of Agriculture and Life Sciences, Dpt. of Business Controlling and Information Management

DOI:

https://doi.org/10.31914/aak.2506

Keywords:

corn, export, neighborhood effect, agriculture

Abstract

The globalization of agriculture has significantly transformed the world trade of maize. The market growth of recent decades, the increase in the number of free trade agreements and territorial concentration justify the study of neighbourhood effects. Although the literature on neighbourhood effects has previously focused almost exclusively on the industrial and service sectors, an examination of the agricultural sectors has also become increasingly common in recent years. The aim of the study is to present spatial dependence as a phenomenon indicating neighbourhood effects in the world maize market between 1996 and 2015. The article analyses spatial dependence in the maize market using Moran’s global and local I indicator, covering the effects of temporal dynamics of neighbourhood effects. Our results confirmed that the expansion of the maize market has led to an increase in spatial dependence, mainly limited to only few regions. In the global maize market, we were able to identify the presence of three hot zones in North America, South America, and Europe.

References

Ackerman, F., Wise, T. A., Gallagher, K. P., Ney, L., Flores, R. (2003). Free trade, corn, and the environ-ment: Environmental impacts of US-Mexico corn trade under NAFTA. Global Developmentand Enviroment Institute, Working paper, Tufts University. Medford, USA DOI: 10.4337/9781848446045.00017

Allaire, G., Poméon, T., Maigné, E., Cahuzac, E., Simioni, M., Desejeux, Y. (2015). Territorial analysis of the diffusion of organic farming in France: Between heterogeneity and spatial dependence.Eco-logical Indicators,59, 70-81.DOI: 10.1016/j.ecolind.2015.03.009

Anselin, L. (2010). Local Indicators of Spatial Association — LISA. Geographical Analysis, 27 (2), 93-115. DOI: 10.1111/j.1538-4632.1995.tb00338.x

Cheng, S., Song, L., LI, X. (2014). Evolution of spatial pattern of crude oil trade.Studies in Sociology of Science, 5 (1), 1. Link

Cliff, A. D., Ord, J. K. (1974). Spatial autocorrelation, London: Pion.Combes, P. P., Overman, H. G. (2004). The spatial distribution of economic activities in the European Union.Handbook of regional and urban economics,4, 2845-2909. DOI: 10.1016/s1574-0080(04)80021-x

Csonka, A., Bareith, T., Gál, V.A. (2018a). Spatial distribution of the demand forCAP-measures to promote agroforestry: The Hungarian case. 14th Annual International Conference on Economics and Business, 10-12. May 2018. Sapientia Hungarian University of Transylvania, Csíksze-reda/Miercurea Ciuc, Romania. pp. 59-68. Link

Csonka, A., Bareith, T., Gál, V. A. Fertő, I. (2018b). Spatial Pattern of CAP Measures Promoting Agrofo-restry in Hungary.AgBioForum, 21 (2), 127-134. Link

Csonka, A., Fertő, I. (2017). Spatial Dimension of Structural Changes in the Hungarian Hog Sector, Pro-ceedings of 6th International Conference of Economic Sciences, 4-5. May. 2017. Kaposvár Univer-sity, Kaposvár. pp. 11-20. Link

Csonka, A., Fertő, I. (2020). Structural change and agglomeration in the Hungarian pork industry.Eu-ropean Planning Studies, 28 (9), 1756-1770. DOI: 10.1080/09654313.2019.1687652

Csuvár, Á., Barna, R. (2020). Spatial illustration of indicatorson the example of biomass potential for energy purposes in the Tabi district, Regional and Business Studies, 12 (1), 29-43. DOI: 10.33568/rbs.2458

de la Mata, T., Llano-Verduras, C. (2011). Spatial pattern and domestic tourism: An econometric analy-sis using inter-regional monetary flows by type of journey.Papers in Regional Science,91 (2), 437-470. DOI: 10.1111/j.1435-5957.2011.00376.x

Fujita, M., Krugman, P. R., Venables, A. (1999). The spatial economy: Cities, regions, and international trade. MIT press. DOI: 10.7551/mitpress/6389.001.0001

Holmes, T. J., Lee, S. (2012). Economies of density versus natural advantage: Crop choice on the back forty.Review of Economics and Statistics, 94 (1), 1-19. DOI: 10.1162/rest_a_00149

Ilbery, B., Maye, D. (2010). Clustering and the spatial distribution of organic farming in England and Wales.Area,43 (1), 31-41. DOI: 10.1111/j.1475-4762.2010.00953.x

Isik, M. (2004). Environmental regulation and the spatial structure of theUS dairy sector.American Journal of Agricultural Economics, 86 (4), 949-962. DOI: 10.1111/j.0002-9092.2004.00645.x

Lin, F., Sim, N. C. (2012). Death of distance and the distance puzzle.Economics Letters, 116 (2), 225-228. DOI: 10.1016/j.econlet.2012.03.004

Logan, J. (2005). Spatial thinking in social science, előadássorozat, Brown Univesity Letöltve: Link (Utolsó letöltés: 20/02/2020)

McWilliams, M., Moore, M. (2013). Agglomeration in agriculture: a quasi-experiment in the corn belt. InHeartland Environmental and Resource Economics Workshop. Link

Mulatu, A., Wossink, A. (2014). Environmental regulation and location of industrialized agricultural production in Europe. Land Economics, 90 (3), 509-537. DOI: 10.3368/le.90.3.509

Nemes Nagy, J. (2005). Regionális elemzési módszerek. Regionális tudományi tanulmányok, 11., ELTE Regionális Földrajzi Tanszék, MTA-ELTE Regionális Tudományi Kutatócsoport, Budapest. Link

Nene, G., Schoengold, K. (2019). Hog Production and Agglomeration Economies: The Case of US State-Level Hog Production.Journal of Agricultural Economics, 5 (3), 663-672. Link

Neumann, K., Verburg, P. H., Stehfest, E., Müller, C. (2010). The yield gap of global grain production: A spatial analysis. Agricultural systems, 103 (5), 316-326. DOI: 10.1016/j.agsy.2010.02.004

OECD (2019). Crop production (indicator). (Utolsó letöltés: 26/09/2019)

Risgaard, M. L., Frederiksen, P., Kaltoft, P. (2007). Socio-cultural processes behind the differential distri-bution of organic farming in Denmark: a case study.Agriculture and Human Values, 24 (4), 445-459. DOI: 10.1007/s10460-007-9092-y

Schmidtner, E., Lippert, C., Engler, B., Haring, A. M., Aubacher, J., Dabbert, S. (2012). Spatial distribution of organic farming in Germany: does neighbourhood matter?.European Review of Agricultural Economics, 39 (4), 661-683. DOI: 10.1093/erae/jbr047

Schepf, R.D. (2007). US-Canada WTO Corn Trade Dispute. Congressional Research Service, Library of Congress.Sweeney, S., Steigerwald, D. G., Davenport, F., Eakin, H. (2013). Mexican maize production: Evolving organizational and spatial structures since 1980. Applied Geography,39, 78-92. DOI: 10.1016/j.ap-geog.2012.12.005

Tiefelsdorf, M. (2002). The Saddlepoint Approximation of Moran's I's and Local Moran's I's Reference Distributions and Their Numerical Evaluation. Geographical Analysis34 (3), 187-206. DOI: 10.1111/j.1538-4632.2002.tb01084.x

Tobler, W.R. (1970). A computer movie simulating urban grown in the Detroit region. Economic Geography 46, 234-240. DOI: 10.2307/143141

UNSD (2017). Commodity Trade Database (COMTRADE).United Nations Statistical Division, New York. Elérhető: Link

World Bank (2017). Commodity Trade Database(COMTRADE), Elérhető: World Bank’s World Integ-rated Trade Solution (WITS) software,Washington D.C. Elérhető: Link

Yang, W., Liu, Y. C., Mai, C. C. (2017). How did Japanese exports evolve from 1995 to2014? A spatial econometric perspective.Japan and the World Economy,41, 50-58. DOI: 10.1016/j.ja-pwor.2016.12.002

Yilmazkuday, H. (2020). Welfare Implications of Solving the Distance Puzzle: Global Evidence from the Last Two Centuries. SSRN Electronic Journal, pp 34. DOI: 10.2139/ssrn.3533415

Yotov, V.Y. (2012). A simple solution to the distance puzzle in international trade, Economics Letters, 117 (3) 794-798, DOI: 10.1016/j.econlet.2012.08.032

Zahniser, S., Coyle, W. T. (2004).US-Mexico corn trade during theNAFTA era: new twists to an old story. US Department of Agriculture, Economic Research Service.

Zhang, L., Wang, J., Wen, H., Fu, Z., Li, X. (2016). Operating performance, industry agglomeration and its spatial characteristics of Chinese photovoltaic industry. Renewable and Sustainable Energy Re-views65, 373-386. DOI: 10.1016/j.rser.2016.07.010

Published

2021-07-01

Issue

Section

Agricultural Economy

How to Cite

Neighbourhood Effects on the world maize market between 1996 and 2015. (2021). ACTA AGRARIA KAPOSVARIENSIS, 25(1), 79-95. https://doi.org/10.31914/aak.2506