Fumonizin mikotoxinok átalakulása az emésztés során, toxikus hatásuk, valamint biológiai hatástalanításuk
Irodalmi áttekintés
DOI:
https://doi.org/10.31914/aak.5167Kulcsszavak:
táplálék mátrix, emésztés, biológiai hozzáférhetőség, fumonizinek, gyomor-bél traktusAbsztrakt
A mikotoxin-szennyezettség az élelmiszertermelés, -feldolgozás, -tárolás, -forgalmazás szinte minden szintjén kialakulhat, és jelentős gazdasági károkat okoz az állattenyésztésben, az állati termékelőállítás során és a növénytermesztésben egyaránt. Emberi viszonylatban az élelmiszerek előállítása-, feldolgozása és elfogyasztása során a szervezetbe bejutva a mikotoxinok számos egészségügyi problémát idéznek elő. Mivel a mikotoxin elsődleges expozíciós szerve a gasztrointesztinális traktus, emiatt a mikotoxin bélrendszerre gyakorolt káros hatásai prezentálásra kerülnek. Jelen áttekintő tanulmány bemutatja a táplálékban jelen levő és emésztés során felszabaduló fumonizin mikotoxin toxicitási hatásmechanizmusát, lehetséges átalakulási formáit, és a szervezet számára a különböző metabolitok biológiai hozzáférhetőségét. Cél továbbá a mikotoxin biológiai hatástalanításának ismertetése, ami leginkább a probiotikus baktériumokkal való megkötést, detoxifikálást jelenti. Ez a módszer az egyik olyan lehetséges út a mikotoxin-szennyezettség kiküszöbölésére, amely közben az élelmiszerek és takarmányok értékes komponensei nem sérülnek a feldolgozás során.
Hivatkozások
Andrade P.D. (2023): Dietary risk assessment for fumonisins: challenges and prospects, Current Opinion in Food Science, 54:101080, 11. DOI: https://doi.org/10.1016/j.cofs.2023.101080
Bartók T., Tölgyesi L., Mesterházy Á., Bartók M., Szécsi Á. (2010): Identification of the first fumonisin mycotoxins with three acyl groups by ESI-ITMS and ESI-TOFMS following RP-HPLC separation, palmitoyl, linoleoyl and oleoyl EFB1 fumonisin isomers from a solid culture of Fusarium verti-cillioides. Food Additives and Contaminants 27: 1714-1723. DOI: https://doi.org/10.1080/19440049.2010.521958
Bartók T., Szécsi Á., Juhász K., Bartók M., Mesterházy Á. (2013): ESI-MS and MS/MS identification of the first ceramide analogues of fumonisin B1 mycotoxin from a Fusarium verticillioides culture following RP-HPLC separation. Food Additives and Contaminants, 30: 1651-1659. DOI: https://doi.org/10.1080/19440049.2013.809626
Bouhet S., Oswald I. (2007): The intestine as a possible target for fumonisin toxicity – a review, Molecular Nutrition and Food Research, 51 925-931. DOI: https://doi.org/10.1002/mnfr.200600266
Braun M.S., Wink M. (2017): Exposure, Occurrence, and Chemistry of Fumonisins and their Cryptic Derivatives, Comprehensive Reviews in Food Science and Food Safety, 23. DOI: https://doi.org/10.1111/1541-4337.12334
Csenki Z., Bartók T., Bock I., Horváth L., Lemli B., Zsidó B.Z., Angeli C., Csaba Heté-nyi C., Szabó I, Urbányi B., Kovács M., Poór M. (2023): Interaction of Fumonisin B1, N-Palmitoyl-Fumonisin B1, 5- O-Palmitoyl-Fumonisin B1, and Fumonisin B4 Mycotoxins with Human Serum Albumin and Their Toxic Impacts on Zebrafish Embryos, Biomolecules, 13:755. DOI: https://doi.org/10.3390/biom13050755
Dall’Asta, C., Mangia, M., Berthiller, F., Molinelli, A., Sulyok, M., Schuhmacher, R., Krska, R., Galaverna, G., Dossena, A. and Marchelli R. (2009): Difficulties in fumonisin determination: the issue of hidden fumonisins, Analytical and Bioanalytical Chemistry 395: 1335-1345. DOI: https://doi.org/10.1007/s00216-009-2933-3
Dawlal P., Brabet C., Thantsha M.S., Buys E.M. (2019): Visualisation and quantification of fumonisins bound by lactic acid bacteria isolates from traditional African maize-based fermented cereals, ogi and mahewu, Food Additives & Contaminants: Part A 296-307. DOI: https://doi.org/10.1080/19440049.2018.1562234
Ding S., Cheng Y., Kalam Azad Md. A., Zhu Q., Huang P., Kong X. (2023): Development of small intestinal barrier function and underlying mechanism in Chinese indigenous and Duroc piglets during suckling and weaning periods, Animal Nutrition Journal, 46. DOI: https://doi.org/10.1016/j.aninu.2023.09.005
Domijan A.-M., Abramov A. Y. (2011): Fumonisin B1 inhibits mitochondrial respiration and deregu-lates calcium homeostasis-Implication to mechanism of cell toxicity. The International Journal of Biochemistry & Cell Biology. 897–904. DOI: https://doi.org/10.1016/j.biocel.2011.03.003
Du K., Liu P., Li Y., X. Ma X. (2017): Effects of dietary mycotoxins on gut microbiome, Protein and Peptide Letters, 24, 999. DOI: https://doi.org/10.2174/0929866524666170223095207
Dutton M.F. (2009): The African Fusarium/maize disease. Mycotoxin Research, 25: 29-39. DOI: https://doi.org/10.1007/s12550-008-0005-8
European Food Safety Authority (EFSA) (2018). Appropriateness to set a group health-based gu-idance value for fumonisins and their modified forms. EFSA Journal DOI: https://doi.org/10.2903/j.efsa.2018.5172
Enongene E.N., Sharma R.P., Bhandari N., Voss K.A., Riley R.T. (2000): Disruption of sphingolipid metabolism in small intestines, liver and kidney of mice dosed subcutaneously with fumonisin B1, Food Chem. Toxicol. 38, 793–799. DOI: https://doi.org/10.1016/s0278-6915(00)00065-x
Ezdini K., Salah-Abbés J.B., Belgacem H., Mannai M., Abbés S. (2020): Lactobacillus paracasei allaviates genotoxicity, oxidative stress status and histopatological damage induced by Fumonisin B1 in BALB/c mice, Toxicon 185:46-56. p. DOI: https://doi.org/10.1016/j.toxicon.2020.06.024
Falavigna C., Cirlini M., Galaverna G., C. Dall’Astra (2012): Masked fumonisins in processed food: Co-occurrence of hidden and bound, World Mycotoxin Journal, 5 (3): 325-334. DOI: https://doi.org/10.3920/wmj2012.1403
Ferrara M., Haidukowski M., D’Imperio M., Parente A., De Angelis E., Monaci L., Logrieco A.F., Mulè G. (2021): New insight into microbial degradation of mycotoxins during anaerobic digestion, Was-te Management, 119 215-225. DOI: https://doi.org/10.1016/j.wasman.2020.09.048
Fodor J., Meyer K., Gottschalk C., Mamet R., Kametler L., Bauer J., Horn P., Kovács F., Kovács M. (2007): In vitro microbial metabolism of fumonisin B1, Food Additives and Contaminants, 24 (4) 416-420. DOI: https://doi.org/10.1080/02652030701216461
Freire L., Sant’Ana A.S. (2017): Modified mycotoxins: An updated review on their formation, de-tection, occurrence, and toxic effects, Food and Chemical Toxicology, 111:189-205. DOI: https://doi.org/10.1016/j.fct.2017.11.021
Frisvad J.C., Smedsgaard J., Samson R.A., Larsen T.O., Thrane U. (2007): Fumonisin B2 Production by Aspergillus niger, Journal of Agriculture and Food Chemistry, 55 (23): 9727-9732. DOI: https://doi.org/10.1021/jf0718906
González-Arias C.A., Marín S., Sanchis V., Ramos A.J. (2013): Mycotoxin bioaccessibility/absorption assessment using in vitro digestion models: a review, World Mycotoxin Journal, 6 (2): 167-184. DOI: https://doi.org/10.3920/wmj2012.1521
Gu M.J., Han S.E., Hwang K., Mayer E., Reisinger N., Schatzmayr D., Park B-C., Han S.H., Yun C-H. (2019): Hydrolyzed fumonisin B1 induces less inflammatory responses than fumonisin B1 in the co-culture model of porcine intestinal epithelial and immune cells, Toxicology Letters, 305 110-116. DOI: https://doi.org/10.1016/j.toxlet.2019.01.013
Grenier B., Bracarense A-P. F.L., Schwartz H.E., Trumel C., Cossalter A-M., Schatzmayr G., Kolf-Clauw M., Moll W-D., Oswald I.P. (2012): The low intestinal and hepatic toxicity of hydrolyzed fumo-nisin B1 correlates with its inability to alter the metabolism of sphingolipids, Biochemical Pharmacology, 83 1465-1473. DOI: https://doi.org/10.1016/j.bcp.2012.02.007
Hahn I., Nagl V., Schwartz-Zimmermann H.E., Varga E., Schwartz C., Slavik V., Reisinger N., Malachová A., Cirlini M., Generotti S., Dall’Asta C., Krska R., Moll W-D., Berthiller F. (2014): Effects of orally administered fumonisin B1 (FB1), partially hydrolysed FB1, hydrolysed FB1 and N-(1-deoxy-D-fructos-1-yl) FB1 on the sphingolipid metabolism in rats, Food and Chemical Toxicology, 76: 11-18. DOI: https://doi.org/10.1016/j.fct.2014.11.020
Haschek W.M., Voss K.A., Beasley V.R. (2002): Selected Mycotoxins Affecting Animal and Human Health, Handbook of Toxicologic Pathology (Second Edition), 645-699. DOI: https://doi.org/10.1016/b978-012330215-1/50026-0
Heinl S., Hartinger D., Thamhesl M., Vekiru E., Krska R., Schatzmayr G., Moll W-D., Grabherr R. (2010): Degradation of Fumonisin B1 by the consecutive action of two bacterial enzymes, Journal of Biotechnology 145 (2): 120-129. DOI: https://doi.org/10.1016/j.jbiotec.2009.11.004
Hopmans E.C., Hauck C.C., Hendrich, S., Murphy, P.A. (1997): Excretion of fumonisin B1, hydrolyzed fumonisin B1, and the fumonisin B1-fructose adduct in rats. Journal of Agricultural and Food Chemistry 45: 2618-2625. DOI: https://doi.org/10.1021/jf960886j
Humpf H.U., Voss K.A. (2004): Effects of thermal food processing on the chemical structure and toxicity of fumonisin mycotoxins. Mol Nutr Food Res 48:255–269. DOI: https://doi.org/10.1002/mnfr.200400033
IARC Monographs on the evaluation of carcinogenic risk to humans (2002)
Iqbal N., Czékus Z., Poór P., Ördög A. (2021): Plant defence mechanisms against mycotoxin Fumonisin B1, Chemico-Biological Interactions 343: 1-12. DOI: https://doi.org/10.1016/j.cbi.2021.109494
Jin J., Breekmann K., Ringo E., Rietjens I. M.C.M., Xing F. (2021): Interaction between food-borne mycotoxins and gut microbiota: A review, Food Control 126:1-13. DOI: https://doi.org/10.1016/j.foodcont.2021.107998
Khalil A.A., Abou-Gabal A.E., Abdellatef A.A., Khalid A.E. (2015): Protective role of probiotic lactic acid bacteria against dietary fumonisin B1-induced toxicity and DNA fragmentation in sprague-dawley rats, Preparative Biochemistry and Biotechnology 45: 530-550. DOI: https://doi.org/10.1080/10826068.2014.940969
Kovács M. (2019): Mikotoxinok a takarmány- és élelmiszerláncban, in: Babinszky L., Halas V. (szerk.), Innovatív takarmányozás, Akadémiai Kiadó 18: 750-796. DOI: https://doi.org/10.1556/9789634540571
Kovács M., Horn P., Magyar T., Tornyos G., Pósa R., Mézes M., Cseh S., Szabó A., Szabó-Fodor J. (2016): A fumonizin B1 mikotoxin a táplálékláncban és egészségkárosító hatásai, In Memoriam Kovács Ferenc Nemzetközi Állatorvos és Állattenyésztő Kongresszus 38-43. p.
Kostic A., Milincic D., Petrovic T., Krnjaja V., Stanojevic C., Barac M.B., Tesic Z. Lj., Pesic M.B: (2019): Mycotoxins and mycotoxin producing fungi in pollen: a review, Toxins, 11,64. DOI: https://doi.org/10.3390/toxins11020064
Lallé J-P., Lessard M., P. Oswald I., David J-C. (2009): Consumption of fumonisin B1 for 9 days induces stress proteins along the gastrointestinal tract of pigs, Toxicon, 55: 244-249. DOI: https://doi.org/10.1016/j.toxicon.2009.07.027
Li X., Li J., Feng Y., Liu L., Kuang H., Xu C., Guo L. (2024): Fluorescent microsphere immunochromato-graphic sensor for the detection of total fumonisins B1, B2, and B3 in grain samples, Journal of Food Composition and Analysis, 29. DOI: https://doi.org/10.1016/j.jfca.2024.106018
Liu L., Xie M., Wei D. (2022): Biological Detoxification of Mycotoxins: Current status and future ad-vances, International Journal of Molecular Sciences 23 (1064): 1-19. DOI: https://doi.org/10.3390/ijms23031064
Lu Q., Qin J-A., Yan-Wei Fu Y-W., Luo J-Y., Lu J-H., Logrieco A.F., Yang M-H. (2020): Modified mycoto-xins in foodstuffs, animal feed, and herbal medicine: A systematic review on global occurrence, transformation mechanism and analysis methods, Trends in Analythical Chemistry, 133:28. DOI: https://doi.org/10.1016/j.trac.2020.116088
Manyes L., Ruiz M.J., Luciano F.B., Meca G. (2013): Bioaccessibility and bioavailability of fumonisin B2 and its reaction products with isothiocyanates through a simulated gastrointestinal digestion system, Food Control 37. (2014) 326-335. DOI: https://doi.org/10.1016/j.foodcont.2013.09.056
Massarolo K.C., Ferreira C.FJ., Collazzo C.C., Bianchini A., Kupski L., Badiale-Furlong E. (2020): Re-sistant starch and hydrothermal treatment of cornmeal: Factors in aflatoxins and fumonisin B1 reduction and bioaccessibility, Food Contol (114) DOI: https://doi.org/10.1016/j.foodcont.2020.107274
Merrill A. Jr. Sullard M.C., Wang E., Voss K.A., Riley R.T. (2001): Sphingolipid Metabolism: Roles in Signal Transduction and Disruption by Fumonisins, Environmental Health Perspectives, 283-289. DOI: https://doi.org/10.2307/3435020
Mogensen J.M., Moller K.A., Freiesleben P., Labuda R., Varga E., Sulyok M., Kubatova A., Thrane U., Andersen B., Nielsen K.F. (2010): Production of fumnisins in B2 and B4 in Tolypocladium speci-es, J ind Microbiol Biotechnol (2011) 38: 1329-1335. DOI: https://doi.org/10.1007/s10295-010-0916-1
Musker M., Licinio J., Wong M-L. (2018): Inflammation Genetics of Depression, Inflammation and Immunity in Depression, 411-425. DOI: https://doi.org/10.1016/b978-0-12-811073-7.00023-4
Niderkorn V., Morgavi D.P., Aboab D.P., Lemaire M., Boudra H. (2009): Cell wall component and mycotoxin moietiesinvolved in the binding of fumonosin B1 and B2 by lactic acid bacteria, Jour-nal of Applied Microbiology, 106,3,977-985. DOI: https://doi.org/10.1111/j.1365-2672.2008.04065.x
Pizzolitto R.P., Salvano M.A., Dalcero A.M. (2012): Analysis of fumonisin B1 removal by microor-ganisms in co-occurrence with aflatoxin B1 and the nature of the binding process, International journal of food microbiology 156: 214-221. DOI: https://doi.org/10.1016/j.ijfoodmicro.2012.03.024
Prelusky D.B., Savard M.E., Trenholm H.L., (1994): Pharmacokinetic fate of 14C-labelled fumonisin B1 in swine. Natural Toxins 2: 73-80. DOI: https://doi.org/10.1002/nt.2620020205
Prelusky D.B., Trenholm H.L., Savard, M.E. (1995): Pilot study on the plasma pharmacokinetics of fumonisin B1 in cows following a single dose by oral gavage or intravenous administration. Na-tural Toxins 3: 389-394. DOI: https://doi.org/10.1002/nt.2620030511
Ridley C.P., Khosla C. (2009): Polyketides, Encyclopedia of Microbiology (Third Edition) 472-481. DOI: https://doi.org/10.1016/B978-012373944-5.00158-9
Riley R.T., Alfred H. M. Jr. (2019): Ceramide synthase inhibition by fumonisins: a perfect storm of perturbed sphingolipid metabolism, signaling, and disease, Journal of Lipid Research, 1183-1189. DOI: https://doi.org/10.1194/jlr.s093815
Rychlik M., Humpf H-U., Marko D., Danicke S., Mally A., Berthiller F., Klaffke H., Lorenz N. (2014): Proposal of a comprehensive definition of modified and other forms of mycotoxins including “masked” mycotoxins, Mycotoxin Research, 9. DOI: https://doi.org/10.1007/s12550-014-0203-5
Seefelder W., Hartl M., Humpf H.U. (2001): Determination of N- (Carboxymethyl)fumonisin B1 in corn products by liquid chromatography/electrospray ionization- mass spectrometry. J Agric Food Chem 49:2146–2151. DOI: https://doi.org/10.1021/jf001429c
Shier W.T. (2000): The fumonisin paradox: a review of research on oral bioavailability of fumonisin B1, a mycotoxin produced by Fusarium moniliforme. J Toxicol Toxin Rev 19:161–187. DOI: https://doi.org/10.1081/txr-100100319
Soriano J.M., Gonzales L., Catalá A.I. (2005): Mechanism of action of sphingolipids and their metaboli-tes in the toxicity of fumonisin B1, Progress in Lipid Research 44: 345-356. DOI: https://doi.org/10.1016/j.plipres.2005.09.001
Tan H., Zhou H., Guo T., Zhou Y., Wang S., Liu X., Zhang Y., Ma L. (2022): Matrix-associated mycotoxins in foods, cereals and feedstuffs: A review on occurrence, detection, transformation and future challenges, Critical Reviews in Food Science and Nutrition, 15. DOI: https://doi.org/10.1080/10408398.2022.2131724
Vanhoutte I., Audenaert K., De Gelder L. (2016): Biodegradation of Mycotoxins: Tales from Known and Unexplored Worlds, Frontiers in Microbiology, 7, 561. DOI: https://doi.org/10.3389/fmicb.2016.00561
Versantvoort C., van de Kamp E., Rompelberg C. (2004): Developement and applicability of an in vitro digestion model in assessing the bioaccessibility of contaminants from food, Food and Chemical Toxicology 43 (1) 31-40. DOI: https://doi.org/10.1016/j.fct.2004.08.007
Vudathala D.K., Prelusky D.B., Ayroud M., Trenholm, H.L., Miller, J.D., (1994.): Pharmacokinetic fate and pathological effects of 14C-fumonisin B1 in laying hens. Natural Toxins, 2: 81-88. DOI: https://doi.org/10.1002/nt.2620020206
Wen D., Han W., Chen Q., Qi G., Gao M., Guo P., Liu Y., Wu Z., Fu S., Lu Q., Qiu Y. (2024): Integrating net-work pharmacology and experimental validation to explore the mechanisms of luteolin in allevi-ating fumonisin B1–induced intestinal inflammatory injury, Toxicon (237) DOI: https://doi.org/10.1016/j.toxicon.2023.107531
Yang L., Yang L., Cai Y., Luo Y., Wang H., Wang L., Chen J. (2023): Natural mycotoxin contamination in dog food: A review on toxicity and detoxification methods, Ecotoxicology and Environmental Safety, 257:11. DOI: https://doi.org/10.1016/j.ecoenv.2023.114948
Zeebone Y.Y. (2023): Evaluation of Fumonisins exposure through structural and funcional changes in the gastrointestinal tract of pigs, Doctoral Dissertation, Kaposvár
Zeebone Y.Y., Kovács M., Halas V. (2020): Effects of Fumonisin B1 on the gastrointestinal trackt functionality – a review, Állattenyésztés és Takarmányozás 69 (1): 53-66.
Zhao H., Wang X., Zhang J., Zhang J., Zhang B. (2016): The mechanism of Lactobacillus strains for their ability to remove fumonisin B1 and B2, Food and Chemical Toxicology 97: 40–46. DOI: https://doi.org/10.1016/j.fct.2016.08.028
Letöltések
Megjelent
Folyóirat szám
Rovat
License
Copyright (c) 2024 Varga-Szatmári Viktória, Vargáné Visi Éva
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.