Chlorophyll studies in the woody plant collection of the Buda Arboretum

Authors

  • Petra Emese MATE, Tájépítészeti, Településtervezési és Díszkertészeti Intézet, Budapest, Kert- és Szabadtértervezési Tanszék , MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design https://orcid.org/0009-0007-5490-0353 (unauthenticated)
  • Péter Bodor-Pesti MATE, Szőlészeti és Borászati Intézet , MATE, Institute of Viticulture and Oenology https://orcid.org/0000-0001-8346-4975
  • Sára Sarolta Jánossyné Perneczky MATE, Tájépítészeti, Településtervezési és Díszkertészeti Intézet, Budapest, Kert- és Szabadtértervezési Tanszék , MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design https://orcid.org/0009-0004-7213-7484 (unauthenticated)
  • Gellért Vilmos Szabó MATE, Tájépítészeti, Településtervezési és Díszkertészeti Intézet, Budapest, Kert- és Szabadtértervezési Tanszék , MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design https://orcid.org/0009-0003-9643-4312 (unauthenticated)
  • Krisztina Szabó MATE, Tájépítészeti, Településtervezési és Díszkertészeti Intézet, Budapest, Kert- és Szabadtértervezési Tanszék , MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design https://orcid.org/0000-0002-3233-0974

DOI:

https://doi.org/10.36249/4d.77.6300

Keywords:

chlorophyll content, urban afforestation, plant application, ecosystem services

Abstract

Climate change and the increase in urbanisation intensity have a significant impact on the ecosystems of the forests, so the sustainability of green infrastructure requires particular attention. Among the essential elements of these systems are woody plants, which not only provide flood shade and contribute to biodiversity, but also play an indispensable role by providing key ecosystem services such as temperature regulation and air pollution reduction. However, different taxa contribute to ecosystem services to different degrees. For this reason, we are constantly looking for species that are best adapted to urban environments and contribute to mitigating the negative effects of climate change and urbanisation. Several indices are available to assess the adaptive capacity and physiological status of individual taxa. In order to understand the ecosystem service potential of woody taxa in urban environments, the first phase of our research focused on the chlorophyll content of leaves, as chlorophyll content is closely related to photosynthetic activity and oxygen production. The aim of the measurements is to compare the chlorophyll content of species, cultivars and other potentially applicable taxa already in use and their variation during the growing season. The measurements will be carried out in the Buda Arboretum, where about 100 woody species (trees and shrubs) have been selected. Our preliminary measurements show significant differences in the chlorophyll content of juvenile (morphologically and anatomically underdeveloped) and old leaves (fully developed, functionally active or already senescent) of evergreen species even in summer. Significant differences were also found when comparing genera, sometimes with taxa that play a similar role in urban plant use.

Author Biographies

  • Petra Emese, MATE, Tájépítészeti, Településtervezési és Díszkertészeti Intézet, Budapest, Kert- és Szabadtértervezési Tanszék, MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design

    assistant lecturer, PhD student
    e-mail: Dragan.Petra.Emese@uni-mate.hu

  • Péter Bodor-Pesti, MATE, Szőlészeti és Borászati Intézet, MATE, Institute of Viticulture and Oenology

    associate professor, habil., PhD
    e-mail: Bodor-Pesti.Peter@uni-mate.hu

  • Sára Sarolta Jánossyné Perneczky, MATE, Tájépítészeti, Településtervezési és Díszkertészeti Intézet, Budapest, Kert- és Szabadtértervezési Tanszék, MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design

    research assistant
    e-mail: e-mail: janossyne.perneczky.sara.sarolta@uni-mate.hu

  • Gellért Vilmos Szabó, MATE, Tájépítészeti, Településtervezési és Díszkertészeti Intézet, Budapest, Kert- és Szabadtértervezési Tanszék, MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design

    PhD student
    e-mail: g.vilmosszabo@gmail.com

  • Krisztina Szabó, MATE, Tájépítészeti, Településtervezési és Díszkertészeti Intézet, Budapest, Kert- és Szabadtértervezési Tanszék, MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design

    associate professor, PhD
    e-mail: Szabo.Krisztina.dendro@uni-mate.hu

References

Blanusa, T., Garratt, M., Cathcart-James, M., Hunt, L., & Cameron, R. W. F. (2019). Urban hedges: A review of plant species and cultivars for ecosystem service delivery in north-west Europe. Urban Forestry & Urban Greening, 44, 126391. https://doi.org/10.1016/j.ufug.2019.126391

Bodor-Pesti, P., Nguyen, L. L. P., Nguyen, T. B., Dam, M. S., Taranyi, D., & Baranyai, L. (2025). LeafLaminaMap: Exploring Leaf Color Patterns Using RGB Color Indices. AgriEngineering, 7(2), Article 2. https://doi.org/10.3390/agriengineering7020039

Bodor-Pesti, P., Taranyi, D., Nyitrainé Sárdy, D. Á., Lien, N., & Baranyai, L. (2023). Corre-lation of the Grapevine (Vitis vinifera L.) Leaf Chlorophyll Concentration with RGB Color Indices. Horticulturae, 9. https://doi.org/10.3390/horticulturae9080899

Bolund, P., & Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological Eco-nomics, 29(2), 293–301. https://doi.org/10.1016/S0921-8009(99)00013-0

Böll, S. (2018). Stadtbäume der Zukunft – Wichtige Ergebnisse aus dem Forschungprojekt “Stadtgrün”.

Cavender-Bares, J., Nelson, E., Meireles, J., Lasky, J., Miteva, D., Nowak, D., Pearse, W., Helmus, M., Zanne, A., Fagan, W., Mihiar, C., Muller, N., Kraft, N., & Polasky, S. (2022). The hidden value of trees: Quantifying the ecosystem services of tree linea-ges and their major threats across the contiguous US. PLOS Sustainability and Transformation, 1, e0000010. https://doi.org/10.1371/journal.pstr.0000010

Gill, S., Handley, J. F., Ennos, R., & Pauleit, S. (2007). Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environment, 33, 115–133. https://doi.org/10.2148/benv.33.1.115

Gómez-Muñoz, V., Porta-Gándara, M., & Fernández, J. L. (2010). Effect of tree shades in urban planning in hot-arid climatic regions. Landscape and Urban Planning - Land-scape Urban Plan, 94, 149–157. https://doi.org/10.1016/j.landurbplan.2009.09.002

Gyimóthy, A. (2015). How does urban greenery influence our physical, social and psycho-logical well-being? The effects of city squares with or without trees on well-being of users. 4D Tájépítészeti És Kertművészeti Folyóirat, 2–9.

Hirabayashi, S., Kroll, C. N., Nowak, D. J., & Endreny, T. A. (é. n.). I-Tree Eco Dry Depo-sition Model Descriptions.

Immanuel, R., & Miruna, M. (2024). Quantifying chlorophyll content index for efficient nitrogen management in rice (Oryza sativa L.). Crop Research, Volume 59. https://doi.org/10.31830/2454-1761.2024.CR-981

Khuzhakhmetova, A., Sapronova, D., Belyae, v, Alexander, & Lazarev, S. (2023). Study on selection of woody plants to create sustainable green spaces in sparsely forested rural areas. Research on Crops, Volume 24. https://doi.org/10.31830/2348-7542.2023.ROC-994

Kiss M. D. (2019). Ökoszisztéma-szolgáltatások modell-alapú értékelése (o. 10114) [PhD, Szegedi Tudományegyetem]. https://doi.org/10.14232/phd.10114

Konijnendijk, C. (2008). M. Forrest, Landscape Trees and Shrubs. Selection, Use and Mana-gement , CABI, Wallingford (2006) 179pp., Soft cover, 25 GBP/50 USD, ISBN: 978 1 84593 054 7. Urban Forestry & Urban Greening - Urban for green, 7, 139–140. https://doi.org/10.1016/j.ufug.2008.01.003

Livesley, S. J., McPherson, E. G., & Calfapietra, C. (2016). The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. Journal of Environmental Quality, 45(1), 119–124. https://doi.org/10.2134/jeq2015.11.0567

MC-100-spec-sheet.pdf. (é. n.). Elérés 2024. november 9., forrás https://www.apogeeinstruments.com/content/MC-100-spec-sheet.pdf

Nádasy, L., & Valánszki, I. (2021). Perceptional analysis of the role of individual trees in the urban image. 4D Tájépítészeti És Kertművészeti Folyóirat, 64–77. https://doi.org/10.36249/60.5

Nowak, D. (2001). The effects of urban forests on the physical environment. COST Action E12: Urban Forests and Trees. Proceedings No. 1, 22–38.

Nowak, D., Crane, D., Stevens, J., Hoehn, R., Walton, J., & Bond, J. (2008). A Ground-Based Method of Assessing Urban Forest Structure and Ecosystem Services. Arboriculture & Urban Forestry, 34, 347–358. https://doi.org/10.48044/jauf.2008.048

Parmesan, C. (2006). Ecological and Evolutionary Responses to Recent Climate Change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

Parry, C., Blonquist, J. M., & Bugbee, B. (2014). In situ measurement of leaf chlorophyll concentration: Analysis of the optical/absolute relationship. Plant, Cell & Environ-ment, 37(11), 2508–2520. https://doi.org/10.1111/pce.12324

Pongrácz, R. (2011). Analysis of projected climate change for Hungary using ensembles simulations. Applied Ecology and Environmental Research, 9(4), 387–398. https://doi.org/10.15666/aeer/0904_387398

Roloff, A., Korn, S., & Gillner, S. (2009). The Climate-Species-Matrix to select tree species for urban habitats considering climate change. Urban Forestry & Urban Greening - Urban for green, 8, 295–308. https://doi.org/10.1016/j.ufug.2009.08.002

Rosa, C. A. P., & Szabó, K. (2021). The Essentiality of Green Spaces in Urban Landscapes: A Greenway Study for Campo Grande, MS - Brazil. 4D Tájépítészeti És Kertművé-szeti Folyóirat, 40–51. https://doi.org/10.36249/59.3

Scheifinger, H., Menzel, A., Koch, E., Peter, C., & Ahas, R. (2002). Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe. International Journal of Climatology, 22, 1739–1755. https://doi.org/10.1002/joc.817

Sjöman, H., Gunnarsson, A., Pauleit, S., & Bothmer, R. (2012). Selection Approach of Urban Trees for Inner-city Environments: Learning from Nature. Arboriculture & Urban Forestry. https://doi.org/10.48044/jauf.2012.028

Suchocka, M., Heciak, J., Błaszczyk, M., Adamczyk, J., Gaworski, M., Gawłowska, A., Mojski, J., Kalaji, H., Kais, K., Kosno-Jończy, J., & Wojnowska-Heciak, M. (2023). Comparison of Ecosystem Services and Replacement Value calculations performed for urban trees. Ecosystem Services, 63, 101553. https://doi.org/10.1016/j.ecoser.2023.101553

Susanne, B., Philipp, S., Klaus, K., & Josef Valentin, H. (2018). Bavarian Roadside trees facing climate change: Testing stress-tolerant tree species in the research project „Urban Green 2021“. State Institute for Viticulture and Horticulture.

Szabó, K. (2022). Közterületi sorfák jegyzéke. Magyar Díszkertészek Szövetsége. https://www.diszkerteszek.hu/files/2022_KOZTERULETI_SORFAK_JEGYZEKE.pdf

Szolnoki-Tótiván, B. (2024). 2024 tavaszának időjárása. LÉGKÖR folyóirat, 69. évfolyam(3. szám), 200-205.

Tóth B., Doma-Tarcsányi J., Zajacz V. T., Gergely A., & Szabó K. (2024). A telepítési sűrű-ség és a lombkorona-borítottság vizsgálata budapesti szabadtereken. 4D Tájépítészeti és Kertművészeti Folyóirat, 32–41. https://doi.org/10.36249/4d.74.6247

Tutundzic, A. (2019). Landscape architecture and the quality of life: The story of relativity within the transitional settlements. 4D Tájépítészeti És Kertművészeti Folyóirat, 2–13. https://doi.org/10.36249/52.1

Venter, Z., Hassani, A., Stange, E., Schneider, P., & Castell, N. (2024). Reassessing the role of urban green space in air pollution control. Proceedings of the National Academy of Sciences of the United States of America, 121, e2306200121. https://doi.org/10.1073/pnas.2306200121

von Caemmerer, S., & Farquhar, G. D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153(4), 376–387. https://doi.org/10.1007/BF00384257

Downloads

Published

2025-09-15

Issue

Section

Articles

How to Cite

Dragán, P. E., Bodor-Pesti, P., Jánossyné Perneczky, S. S., Szabó, G. V., & Szabó, K. (2025). Chlorophyll studies in the woody plant collection of the Buda Arboretum. 4D Journal of Landscape Architecture and Garden Art, 77, 46-55. https://doi.org/10.36249/4d.77.6300

Most read articles by the same author(s)