Functioning of divalent alkaline metal on yeast multiplication in heavy metal contaminated soil
DOI:
https://doi.org/10.56617/tl.3783Palavras-chave:
alkaline and heavy metals, Saccharomyces cerevisiae, growth, toxicity, soil contaminationResumo
Microbial parameters appear to be very useful in monitoring soil contamination by heavy metals. The toxic heavy metals cause serious threat to the environment, Nowadays, the most an important ecological problem is to correct the toxic effect of heavy metals in contaminated soils. In vitro, two strains of Saccharomy ces cerevisiae (NSS5099 and NSS7002) were tested in order to investigate their tolerance to heavy metals. The growth kinetics of two yeast strains in contaminated growth media by Cu2+, Pb2+, Cd2+ and Ni2+ were studied at 50 µM. The toxicity decreasing order of the investigated heavy metal salts on tested yeast strains was found to be Cu2+ > Pb2+ > Cd2+ > Ni2+. Ions of Cu2+, Pb2+ and Cd2+ at 350 µM and Ni2+ at 450 µM induced a decrease in the number of viable cells by 50% after 48 h incubation at 25°C. The addition of 50 mM Ca(HCO3)2, 75 mM MgSO , or 150 mM K SO in the growth broth medium before addition of 350 µM Cu2+, Pb2+ and Cd2+ or 450 µM Ni2+ shows a protective action against cell death and decreased the toxicity effect. The addition of alkaline metals reduced the effect of 350 and 450 µM of all investigated metals by 40%. The results obtained in the presented study exhibit the higher potentiality of S. cerevisiae strain NSS7002 than the strain NSS5099 to be used for decontamination of soil containing heavy metal ions. Further task is going to examine the range of metal bioaccumulation in the yeast cells and the ability of these strains to be environmental bioremediators.
Referências
Akhtar N., Iqbal J., Iqbal M. 2004: Removal and recovery of nickel (II) from aqueous solution by loofa spongeimmobilized biomass of Chlorella sorokiniana: characterization studies. J Hazard Mater. 108: 85−94. https://doi.org/10.1016/j.jhazmat.2004.01.002
Avery S.V., Tobin J.M. 1993: Mechanisms of adsorption of hard and soft metal ions to Saccharomyces cerevisiae and influence of hard and soft anions. Appl. Environ. Microbiol., 59: 2851−2856. https://doi.org/10.1128/aem.59.9.2851-2856.1993
Avery S.V., Howlett N.G., Radice S. 1996: Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl. Environ. Microbiol. 62: 3960−3966. https://doi.org/10.1128/aem.62.11.3960-3966.1996
Bender J., Phillips P. 2004: Microbial mats for multiple applications in aquaculture and bioremediation. Biores. Technol. 94: 229−238. https://doi.org/10.1016/j.biortech.2003.12.016
Borst-Pauwels G., Theuvenet A. 1984: Apparent saturation kinetics of divalent cation uptake in yeast caused by a reduction in the surface potential. Biochem. Biophys. Acta 771: 171−176. https://doi.org/10.1016/0005-2736(84)90529-7
Blackwell K.J., Tobin J.M., Avery S.V. 1997: Manganese uptake and toxicity in magnesium-supplemented and unsupplemented Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 47: 180−184. https://doi.org/10.1007/s002530050909
Blackwell K.J., Tobin J.M., Avery S.V. 1998: Manganese toxicity towards Saccharomyces cerevisiae: Dependence on intracellular and extracellular magnesium concentrations. Appl. Microbiol. Biotechnol. 49: 751−757. https://doi.org/10.1007/s002530051242
Brady D., Duncan J.R. 1994: Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 34: 149−154. https://doi.org/10.1007/BF00166098
Brady D., Glaum D., Duncan J.R. 1994: Copper tolerance in Saccharomyces cerevisiae. Lett. Appl. Microbiol. 18: 245−250. https://doi.org/10.1111/j.1472-765X.1994.tb00860.x
Can C., Jianlong W. 2007: Correlating metal ion characteristics with biosorption capacity using QSAR model. Chemosphere 69: 1610−1616. https://doi.org/10.1016/j.chemosphere.2007.05.043
Chen C.M, Wang J. 2007: Response of Saccharomyces cerevisiae to lead ion stress. Appl. Microbiol. Biotechnol. 74: 683−687. https://doi.org/10.1007/s00253-006-0678-x
Chojnacka K. 2010: Biosorption and bioaccumulation-the prospects for practical applications. Environ. International 36: 299−307. https://doi.org/10.1016/j.envint.2009.12.001
Collins Y.E., Stotzky G. (1992): Heavy metals alter the electrokinetic properties of bacteria, yeasts, and clay minerals. Appl. Environ. Microbiol. 58: 1592−1600. https://doi.org/10.1128/aem.58.5.1592-1600.1992
Davis T.A., Volesky B., Mucci A. 2003: A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 37: 4311−4330. https://doi.org/10.1016/S0043-1354(03)00293-8
Dostalek P., Patzak M., Matejka P. 2004: Influence of specific growth limitation on biosorption of heavy metals by Saccharomyces cerevisiae. Intern. Biodeterior. Biodegr. 54: 203−207. https://doi.org/10.1016/j.ibiod.2004.03.013
El Aasar S.A. 2005: Adaptive tolerance of Trichoderma hamatum in cadmium, copper and lead heavy metals. Egypt J. Biotechnol. 21: 278−294.
Engl A., Kunz B. 1995: Biosorption of heavy metals by Saccharomyces cerevisiae: effects of nutrient conditions. J. Chem. Technol. Biotechnol. 63: 257−261. https://doi.org/10.1002/jctb.280630310
Gad S.A., Attia M., Ahmed A.H. 2010: Heavy Metals Bio-Remediation by Immobilized Saccharomyces cervisiae and Opuntia ficus indica Waste J. Am. Sci. 6: 79−87.
Gadd G.M. 1992: Metals and microorganisms: a problem of definition. FEMS Microbiol. Lett. 100: 197−204.
Gadd G.M. 1993: Interactions of fungi with toxic metals. New Phytol. 124: 25−60. https://doi.org/10.1111/j.1469-8137.1993.tb03796.x
Gadd G.M., Mowll J.L. 1983: The relationship between cadmium uptake, potassium release and viability in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 16: 45−48. https://doi.org/10.1111/j.1574-6968.1983.tb00256.x
Giller K.E., Witter E., Mcgrath S.P. 1997: Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils. Soil Biol. Biochem. 29: 1389−1414. https://doi.org/10.1016/S0038-0717(97)00270-8
Gniewosz M., Duszkiewicz-Reinhard W., Blazejak S., Sobiecka J., Zarzecka M. 2007: Investigations into magnesium biosorption by waste brewery yeast Saccharomyces uvarum. Acta Sci. Pol., Technol. Ali- ment. 6: 57−67.
Goyal N., Jain S.C., Banerjee U.C. 2003: Comparative studies on the microbial adsorption of heavy metals. Adv. Environ. Res. 7: 311−319. https://doi.org/10.1016/S1093-0191(02)00004-7
Hiroki M. 1992: Effects of heavy metal contamination on soil microbial populations. Soil Sci. Plant Nutr. 38: 141−147. https://doi.org/10.1080/00380768.1992.10416961
Horvath J. 1970: Microbiology. Mezőgazdasági Kiadó, Budapest.
Huang C.P., Morehart A. 1990: The removal of Cu(II) from dilute aqueous solutions by Saccharomyces cerevisiae. Water Res. 4: 433−439. https://doi.org/10.1016/0043-1354(90)90225-U
Jianlong W. 2002: Biosorption of copper (II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochem. 37: 847−380. https://doi.org/10.1016/S0032-9592(01)00284-9
Kambe-Honjoh H., Ohsumi K., Shimoi H., Nakajima H., Kitamoto K. 2000: Molecular breeding of yeast with higher metal-adsorption capacity by expression of histidine-repeat insertion in the protein anchored to the cell wall. J. Gen. Appl. Microbiol. 46: 113−117. https://doi.org/10.2323/jgam.46.113
Kapoor A., Viraraghavan T. 1997: Heavy metal biosorption sites in Aspergillus niger. Biores. Technol. 61: 221−227. https://doi.org/10.1016/S0960-8524(97)00055-2
Kuroda K., Shibasaki S., Ueda M., Tanaka A. 2001: Cell surface engineered yeast displaying a histidine oligopeptide (exa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl. Microbiol. Biotechnol. 57: 697−701. https://doi.org/10.1007/s002530100813
Karamushka V.I., Gadd D.M., Gruzina T.G., Ul'berg Z.R. 1998: The application of colloid-biochemical pa- rameters of microbial cells for the assessment of heavy metal toxicity. Colloid J. Russ. Acad. Sci. 60: 717−720.
Liu X.F., Supek F., Nelsoni N., Culotta V.C. 1997: Negative control of heavy metal uptake by the Saccharomy- ces cerevisiae BSD2 Gene. J. Biol. Chem. 272: 11763−11769. https://doi.org/10.1074/jbc.272.18.11763
Lloyd J.R., Lovley D.R., Macaskie L.E. 2003: Biotechnological application of metal-reducing microorganisms. Adv. Appl. Microbiol. 53: 85−128. https://doi.org/10.1016/S0065-2164(03)53003-9
Lo W., Chua H., Lam K.H. 1999: A comparative investigation on the biosorption of lead by filamentous fungal biomass. Chemosphere 39: 2723−2736. https://doi.org/10.1016/S0045-6535(99)00206-4
Lovely D.R., Coates J.D. 1997: Bioremediation of metal contamination. Curr. Opin. Biotechnol. 8: 285−289. https://doi.org/10.1016/S0958-1669(97)80005-5
Machado M.D., Janssens S., Soares H.M.V.M., Soares E.V. 2009: Removal of heavy metals using a brewer's yeast strain of S. cerevisiae: advantages of using dead biomass. J. Appl. Microbiol. 106: 1792−1804. https://doi.org/10.1111/j.1365-2672.2009.04170.x
Machado M.D., Santos M.S., Gouveia C., Soares H.M., Soares E.V. 2008: Removal of heavy metals using a brewar's yeast strain of Saccharomyces cerevisiae: the flocculation as a separation process. Biores. Technol. 99: 2107−2115. https://doi.org/10.1016/j.biortech.2007.05.047
Malik A. 2004: Metal bioremediation through growing cells. Environ. Int. 30: 261−278. https://doi.org/10.1016/j.envint.2003.08.001
Mowll J.L., Gadd G.M. 1984: Cadmium uptake by Aureobasidium pullulans. J. Gen. Microbiol. 130: 279−284. https://doi.org/10.1099/00221287-130-2-279
Naeem A., Woertz J.R., Fein J.B. 2006: Experimental measurement of proton, Cd, Pb, Sr and Zn adsorption onto the fungal species Saccharomyces cerevisiae. Environ. Sci. Technol. 40: 5724−5729. https://doi.org/10.1021/es0606935
Nakamura H., Hirata Y., Mogi Y., Kobayashi S., Suzuki K., Hirayama T., Karube I. 2007: A simple and highly repeatable colorimetric toxicity assay method using 2,6-dichlorophenolindo-phenol as the redox color indicator and whole eukaryote cells. Anal. Bioanal. Chem. 389: 835−840. https://doi.org/10.1007/s00216-007-1527-1
Park J.K., Lee J.W., Jung J.Y. 2003: Cadmium uptake capacity of two strains of Saccharomyces cerevisiae cells. Enzyme Microbiol. Technol. 33: 371−378. https://doi.org/10.1016/S0141-0229(03)00133-9
Pasternakiewicz A. 2006: The growth of Saccharomyces cerevisiae yeast in cadmium enriched media. Acta Sci. Pol. Technol. Aliment. 5: 39−46.
Perkins J., Gadd G.M. 1993: Accumulation and intracellular compartmentation of lithium ions in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 107: 255−260. https://doi.org/10.1111/j.1574-6968.1993.tb06039.x
Rehman A., Shakoori F.R., Shakoori A.R. 2008: Heavy metal resistant freshwater ciliate, Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals. Biores. Technol. 99: 3890−3895. https://doi.org/10.1016/j.biortech.2007.08.007
Ringot D., Lerzy B., Chaplain K., Bonhoure J.P., Auclair E., Larondele Y. 2007: In vitro biosorption of ochratoxin A on the yeast industry byproducts: Comparison of isotherm models. Biores. Technol. 98: 1812−1821. https://doi.org/10.1016/j.biortech.2006.06.015
Roomans G., Theuvenet A., Van Den Berg T., Borst-Pauwels G. 1979: Kinetics of Ca2+ and Sr2+ uptake by yeast. Effects of pH, cations and phosphate. Biochim. Biophys. Acta 551: 187−196. https://doi.org/10.1016/0005-2736(79)90364-X
Ruta L., Paraschivescu C., Matache M., Avramescu S., Farcasanu I.C. 2010: Removing heavy metals from synthetic effluents using "kamikaze" Saccharomyces cerevisiae cells. Appl. Microbiol. Biotechnol. 85:763−771. https://doi.org/10.1007/s00253-009-2266-3
Saleem M., Brim H., Hussain S., Arshad M., Leigh M.B., Zia-Ul H. 2008: Perspectives on microbial cell sur- face display in bioremediation. Biotechnol. Adv. 26: 151−161. https://doi.org/10.1016/j.biotechadv.2007.10.002
Saltukoglu A., Slaughter J.C. 1983: The effect of magnesium and calcium on yeast growth. J. Inst. Brew. 89: 81−83. https://doi.org/10.1002/j.2050-0416.1983.tb04151.x
Shibasaki S., Maeda H., Ueda M. 2009: Molecular display technology using yeast-arming technology. Anal. Sci. 25: 41−49. https://doi.org/10.2116/analsci.25.41
Singleton I., Simmons P. 1996: Factors affecting silver biosorption by and industrial strain of Saccharomyces cerevisiae. J. Chem. Tech. Biotechnol. 65: 21−28. https://doi.org/10.1002/(SICI)1097-4660(199601)65:1<21::AID-JCTB382>3.0.CO;2-E
Soares E.V., Hebbelinck K., Soares H.M.V.M. 2003: Toxic effects caused by heavy metals in the yeast Saccharomyces cerevisiae: a comparative study. Can. J. Microbiol. 49: 336−343. https://doi.org/10.1139/w03-044
Suh J.H., Kim D.S., Yun J.W., Song S.K. 1998: Process of Pb2+ accumulation in Saccharomyces cerevisiae. Biotecnol. Lett. 20: 153−156. https://doi.org/10.1023/A:1005376424157
Tuszynski T., Pasternakiewicz A. 2000: Bioaccumulation of metal ions by yeast cell of Saccharomyces cerevisiae. Pol. J. Food Nutr. Sci. 4: 31−39.
Veglio F., Beolchini F. 1997: Removal of metals by biosorption. Hydrometallurgy 44: 301−316. https://doi.org/10.1016/S0304-386X(96)00059-X
Volesky B., Phillips H.A. 1995: Biosorption of heavy metals by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 42: 797−806. https://doi.org/10.1007/BF00171964
Wang J., Chen C. 2006: Biosorption of heavy metals by Saccharomyces cerevisiae. Biotechnol. Adv. 24: 427−451. https://doi.org/10.1016/j.biotechadv.2006.03.001
White C., Gadd G.M. 1987: The uptake and cellular distribution of zinc in Saccharomyces cerevisiae. J. Gen. Microbiol. 133: 727−737. https://doi.org/10.1099/00221287-133-3-727
Wang J., Chen C. 2009: Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27: 195−226. https://doi.org/10.1016/j.biotechadv.2008.11.002
Zouboulis A. I., Matis K. A., Lazaridis N.K. 2001: Removal of metal ions from simulated wastewater by Saccharomyces yeast biomass: combining biosorption and flotation processes. Separation Sci. Technol., 36: 349−365. https://doi.org/10.1081/SS-100102932
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2012 Bayoumi Hamuda, Hosam E.A.F. , Tóth Nikolett
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A folyóirat Open Access (Gold). Cikkeire a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).