How Sticky is the Per Capita Income?

Authors

DOI:

https://doi.org/10.33568/rbs.5661

Keywords:

income persistence, income distribution, factors affecting income, Markov chain, dynamic panel model

Abstract

In our settlement-level study using the Markov chain method and dynamic regression panel models, we found that in the period 2011-2021, income in the previous year strongly affects income status, i.e., income shows high persistence. Despite the steady increase in per capita income over the period under study, the spatial structure of the income distribution shows a fixed state, with a high degree of stability: poor municipalities remain poor, while rich municipalities remain rich. Only in the Central and Western Transdanubian regions is there a greater chance of a municipality's population moving into a higher income category. The results of the regression models show that, in addition to the income level of previous years, the higher number of self-employed, the greater distance of settlements from cities and Budapest, the employment structure and the higher share of job seekers have a significant impact on the income of the population.

 

References

Arellano, M., & Bond, S. (1991). Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. The Review of Economic Studies, 58(2), 277-297. https://doi.org/10.2307/2297968

Barro, R. J. & Sala-i-Martin, X. (1992). Convergence. Journal of Political Economy, 100 (2), 223–251. https://doi.org/10.1086/261816

Baumol, W. J. (1986). Productivity Growth, Convergence and Welfare: What the Long Run Data Show. American Economic Review, 76, 1072–1085.

Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1), 115-143. https://doi.org/10.1016/S0304-4076(98)00009-8

Caselli, F., Esquivel, G., & Lefort, F. (1996). Reopening the Convergence Debate: A New Look at Cross-Country Growth Empirics. Journal of Economic Growth, 1(3), 363–389. https://doi.org/10.1007/BF00141044

Cosci, S. & Sabato, V. (2007). Income and Employment Dynamics in Europe. Regional Studies, 41(3), 295-309, http://dx.doi.org/10.1080/00343400600928376

Cheong, T. S. & Wu, Y. (2013). Regional disparity, transitional dynamics and convergence in China. Journal of Asian Economics 29(2), 1–14. https://doi.org/10.1016/j.asieco.2013.08.007

Dall’erba, S. (2005). Distribution of regional income and regional funds in Europe 1989–1999: An exploratory spatial data analysis. The Annals of Regional Science, 39, 121-148. https://doi.org/10.1007/s00168-004-0199-4

Dusek, T. & Kotosz, B. (2017). Területi Statisztika. Akadémiai Kiadó, Budapest.

Egri, Z. (2022a). A hazai települési jövedelemegyenlőtlenségek sajátosságai a földrajzi közelhatások alapján, 2012–2019. Területi Statisztika, 62(6), 625-662. https://doi.org/10.15196/TS620601

Egri, Z. (2022b). Lokális jövedelemegyenlőtlenségi folyamatok a 2010-es évek Magyar-országán. In: Hampel, Gy., Kis, K., & Monostori T. (Eds.): Mezőgazdasági és vidékfejlesztési kutatások a jövő szolgálatában, 3. MTA SZAB Mezőgazdasági Szakbizottság, Szeged.

Egri, Z. (2023). Mobilitás és perzisztencia a hazai települési szintű jövedelemegyenlőtlenségi folyamatokban, 2012–2019. Területi Statisztika 63(1), 3–37 https://doi.org/10.15196/TS630101

Glaeser, E.L., Scheinkman, J. A. & Shleifer, A. (1995). Economic Growth in a Cross-Section of Cities. Journal of Monetary Economics, 36(1), 117-143. https://doi.org/10.1016/0304-3932(95)01206-2

Győri, R. & Mikle, Gy. (2017). A fejlettség területi különbségeinek változása Magyarországon, 1910–2011. Tér és Társadalom 31(3), 143-165. https://doi.org/10.17649/TET.31.3.2866

Hierro, M. & Maza, A. (2009). Structural shifts in the dynamics of the European income distribution. Economic Modelling, 26(3), 733-739. https://doi.org/10.1016/j.econmod.2009.02.003

Hirsch, S., & Gschwandtner, A. (2013). Profit persistence in the food industry: evidence from five European countries. European Review of Agricultural Economics, 40(5), 741–759. https://doi.org/10.1093/erae/jbt007

Islam, N. (1995). Growth Empirics: A Panel Data Approach. Quarterly Journal of Economics, 110(4), 1127-1170. https://doi.org/10.2307/2946651

KSH (2024): A munkaerőpiac legfontosabb éves adatai. KSH. https://www.ksh.hu/stadat_files/mun/hu/mun0001.html

Luo, X., Zhang, Z., Wan, Q. & Jin G. (2021). Spatial poverty traps in rural China: Aggregation, persistence, and reinforcement. Area 53(1), 56-66. https://doi.org/10.1111/area.12643

Major, K. (2008). Markov-modellek - Elmélet, becslés és társadalomtudományi alkalmazások. ELTE Regionális Tudományi Tanszék. http://regionalis.elte.hu/mellekletek/major/rttmarkov_final.pdf

Mankiw, G., Romer, D. & Weil, N. (1992). A Contribution to the Empirics of Economic Growth. Quarterly Journal of Economics, 107(2), 407–437. https://doi.org/10.2307/2118477

Mishra, A. K. & Kumar, A. (2017). What lies behind income inequality and income mobility in India? Implications and the way forward. International Journal of Social Economics, 45(9), 1369-1384. https://doi.org/10.1108/IJSE-03-2017-0119

Quah, D. (1996): Empirics for Economic Growth and Convergence. European Economic Review, 40(6), 1353-1375. https://doi.org/10.1016/0014-2921(95)00051-8

Stokey, N. L. & Lucas, R. E. (1989). Recursive Methods in Economic Dynamics. Harvard University Press. Cambridge. MA, U.S.A. https://doi.org/10.2307/j.ctvjnrt76

Ursavaş, U. & Mendez, C (2022). Regional income convergence and conditioning factors in Turkey: revisiting the role of spatial dependence and neighbour effects. The Annals of Regional Science, 71, 363–389. https://doi.org/10.1007/s00168-022-01168-0

Villaverde, J., Maza. A. & Ramasamy, B. (2010). Provincial Disparities in Post-reform China. China & World Economy, 18(2), 73-95. https://doi.org/10.1111/j.1749-124X.2010.01190.x

Downloads

Published

2024-12-17

How to Cite

How Sticky is the Per Capita Income?. (2024). REGIONAL AND BUSINESS STUDIES, 16(2), 5-19. https://doi.org/10.33568/rbs.5661