A budapesti fafajok képességének értékelése a légköri nehézfémek megkötésére
DOI:
https://doi.org/10.33038/jcegi.3359Kulcsszavak:
nehézfém, tilia tomentosa, fás szárú növényAbsztrakt
A városi zöld infrastruktúra tervezése alapvető szerepet játszik a környezetszennyezés csökkentésében, mint például a nehézfémek megkötésében. A csökkentési hatásokat azonban egyaránt befolyásolják az egyes városok eltérő szennyezési feltételei, valamint a fák és a szennyezés specifikus kölcsönhatásai. Munkánk során Budapesten három közönséges városi fás szárú növényt (Acer platanoides L., Fraxinus excelsior L. Westhof’s Glorie és Tilia tomentosa Moench) vizsgáltunk, hogy összehasonlítsuk nehézfém megkötő képességüket a levelekre kiülepedett porban és a levelekben is. Az összes mintát nedves roncsolással készítettük elő. Négy közlekedési eredetű nehézfém (Zn, Cu, Pb és Ni) meghatározása atomabszorpciós spektrométer (AAS) segítségével történt. A vizsgált eredmények azt mutatták, hogy az összes mért elem releváns koncentrációja minden vizsgált fajban állandó, nevezetesen Zn < Cu < Pb < Ni. Bár a teljes nehézfém-tartalom a porlerakódásban a vegetációs periódus vége felé nőtt, a teljes fémkoncentráció legnagyobb százaléka a nyári szezonban volt kimutatható, mivel a szállópor források évszakosan változtak. Ezek azt mutatják, hogy a fás szárú növények ideális jelöltek lehetnek aszennyezés monitorozására. A vizsgált elemek mindegyike a T. tomentosa porlerakódásában volt a legnagyobb az összes mintavételi idő alatt, ezt követte az A. platanoides, a legkevésbé pedig a F. excelsior. Szignifikáns korrelációt találtunk a porlerakódás és a levél fémtartalma között a T. tomentosaban (0,926 p<0,01). Ezért javasoljuk a T. tomentosat, amely jobb légköri nyomelem-megkötő képességgel rendelkezik, mint az A. platanoides és a F. excelsior, így jobb választás a városi szennyezés csökkentésére.
Hivatkozások
ALFÖLDY, B. – OSÁN, J. – TÓTH, Z. – TÖRÖK, S. – HARBUSCH, A. – JAHN, C. – EMEIS, S. – SCHÄFER, K., (2007): Aerosol optical depth, aerosol composition and air pollution during summer and winter conditions in Budapest. Science of The Total Environment 383, 141–163. https://doi.org/10.1016/j.scitotenv.2007.04.037
ALI, H. – KHAN, E. – SAJAD, M.A. (2013): Phytoremediation of heavy metals-Concepts and applications. Chemosphere 91, 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075
ANIČIĆ, M. – SPASIĆ, T. – TOMAŠEVIĆ, M. – RAJŠIĆ, S. – TASIĆ, M. (2011): Trace elements accumulation and temporal trends in leaves of urban deciduous trees (Aesculus hippocastanum and Tilia spp.). Ecological Indicators 11, 824–830. https://doi.org/10.1016/j.ecolind.2010.10.009
ANIČIĆ, M. – JOVANOVIĆ, G. – STEVIĆ, N. – DELJANIN, I. – NIKOLIĆ, M. – TOMAŠEVIĆ, M. – SAMSON, R. (2019): Leaves of common urban tree species (Aesculus hippocastanum, Acer platanoides, Betula pendula and Tilia cordata) as a measure of particle and particle-bound pollution: a 4-year study. Air Quality, Atmosphere Health 12, 1081–1090. https://doi.org/10.1007/s11869-019-00724-6
ANTISARI, L.V. – ORSINI, F. – MARCHETTI, L. – VIANELLO, G. – GIANQUINTO, G. (2015): Heavy metal accumulation in vegetables grown in urban gardens. Agronomy for Sustainable Development. 35, 1139–1147. https://doi.org/10.1007/s13593-015-0308-z
ASATI, A. – PICHHODE, M. – NIKHIL, K., (2016): Effect of Heavy Metals on Plants: An Overview. International Journal of Application or Innovation in Engineering & Management. ISSN 2319-4847. Volume 5, Issue 3, March 2016
BENÍTEZ, Á. – MEDINA, J. – VÁSQUEZ, C. – LOAIZA, T. – LUZURIAGA, Y. – CALVA, J. (2019): Lichens and Bromeliads as Bioindicators of Heavy Metal Deposition in Ecuador. Diversity 11, 28. https://doi.org/10.3390/d11020028
CATINON, M. – AYRAULT, S. – DAUDIN, L. – SEVIN, L. – ASTA, J. – TISSUT, M. – RAVANEL, P. (2008): Atmospheric inorganic contaminants and their distribution inside stem tissues of Fraxinus excelsior L. Atmospheric Environment 42, 1223–1238. https://doi.org/10.1016/j.atmosenv.2007.10.082
CAPUANA, M. (2011): Heavy metals and woody plants - biotechnologies for phytoremediation. iForest 4, 7–15. https://doi.org/10.3832/ifor0555-004
CHEN, L. – LIU, C. – ZHANG, L. – ZOU, R. – ZHANG, Z. (2017): Variation in tree species ability to capture and retain airborne fine particulate matter (PM2.5). Scientific Reports. 7, 3206. https://doi.org/10.1038/s41598-017-03360-1
CZAJKOWSKA, B. – KIELKIEWICZ, M. (2002): Linden-leaf morphology and the host-plant susceptibility to Eotetranychus tiliarium (Hermann) (Acarida: Tetranychidae), in: Bernini, F., Nannelli, R., Nuzzaci, G., de Lillo, E. (Eds.), Acarid Phylogeny and Evolution: Adaptation in Mites and Ticks. Springer Netherlands, Dordrecht, pp. 435–440. https://doi.org/10.1007/978-94-017-0611-7_45
DANIELYAN, K.E. – CHAILYAN S.G. (2019): Heavy metals. Biomedical Journal of Scientific & Technical Research. ISSN: 2574-1241 21. https://doi.org/10.26717/BJSTR.2019.21.003659
DIMOUDI, A., NIKOLOPOULOU, M., 2003. Vegetation in the urban environment: microclimatic analysis and benefits. Energy and Buildings. 35 (2003) 69–76. https://doi.org/10.1016/S0378-7788(02)00081-6
DZIERŻANOWSKI, K. – POPEK, R. – GAWROŃSKA, H. – SÆBØ, A. – GAWROŃSKI, S.W. (2011): Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. International Journal of Phytoremediation 13, 1037–1046. https://doi.org/10.1080/15226514.2011.552929
EEA, EUROPEAN ENVIRONMENT AGENCY (2022): Status report of air quality in Europe for year 2021.
EL-AMIER, Y.A. – ALGHANEM, S.M. (2018): Tree leaves as bioindicator of heavy metal pollution from soil and ambient air in urban environmental. Plant Archives. Vol. 18 No. 2, 2018 pp. 2559-2566. e-ISSN:2581-6063 (online), ISSN:0972-5210
EMAMVERDIAN, A. – DING, Y. – MOKHBERDORAN, F. – XIE, Y. (2015): Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal 2015, 1–18. https://doi.org/10.1155/2015/756120
FERENCZI, Z. – BOZÓ, L. (2017): Effect of the long-range transport on the air quality of greater Budapest area. International Journal of Environment and Pollution. Vol. 62, Nos. 2/3/4, 2017
FERENCZI, Z. – IMRE, K. – LAKATOS, M. – MOLNÁR, Á. – BOZÓ, L. – HOMOLYA, E. – GELENCSÉR, A. (2021): Long-term characterization of urban PM10 in Hungary. Aerosol Air Qual. Res. 21, 210048. https://doi.org/10.4209/aaqr.210048
HOODAJI, M. – ATAABADI, M. – NAJAFI, P. (2012): Biomonitoring of airborne heavy metal contamination, in: Khare, M. (Ed.), Air Pollution - Monitoring, Modelling, Health and Control. InTech. https://doi.org/10.5772/32963
HROTKÓ, K. – GYEVIKI, M. – SÜTÖRINÉ, D.M. – MAGYAR, L. – MÉSZÁROS, R. – HONFI, P. – KARDOS, L. (2021): Foliar dust and heavy metal deposit on leaves of urban trees in Budapest (Hungary). Environmental Geochemistry Health 43, 1927–1940. https://doi.org/10.1007/s10653-020-00769-y
JEANJEAN, A.P.R. – MONKS, P.S. – LEIGH, R.J. (2016): Modelling the effectiveness of urban trees and grass on PM2.5 reduction via dispersion and deposition at a city scale. Atmospheric Environment 147, 1–10. https://doi.org/10.1016/j.atmosenv.2016.09.033
KOSIOREK, M. – MODRZEWSKA, B. – WYSZKOWSKI, M. (2016): Levels of selected trace elements in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula L.), and Norway maple (Acer platanoides L.) in an urbanized environment. Environ Monit Assess 188, 598. https://doi.org/10.1007/s10661-016-5600-0
KRUTUL, D. – ZIELENKIEWICZ, T. – ZAWADZKI, J. – RADOMSKI, A. – ANTCZAK, A. – DROŻDŻEK, M. (2014): Influence of urban environment orginated heavy metal pollution on the extractives and mineral substances content in bark and wood of oak (Quercus robur L.). Wood Research. 59 (1): 2014 177–190
KWON, K.-J. – URRINTUYA, O. – KIM, S.-Y. – YANG, J.-C. – SUNG, J.-W. – PARK, B.-J. (2020): Removal Potential of Particulate Matter of 12 Woody Plant Species for Landscape Planting. J. People Plants Environ 23, 647–654. https://doi.org/10.11628/ksppe.2020.23.6.647
LI, C. – DU, D. – GAN, Y. – JI, S. – WANG, L. – CHANG, M. – LIU, J. (2022): Foliar dust as a reliable environmental monitor of heavy metal pollution in comparison to plant leaves and soil in urban areas. Chemosphere 287, 132341. https://doi.org/10.1016/j.chemosphere.2021.132341
LIANG, D. – MA, C. – WANG, YUN-QI – WANG, YU-JIE – CHEN-XI, Z. (2016): Quantifying PM2.5 capture capability of greening trees based on leaf factors analyzing. Environmental Science and Pollution Research. 23, 21176–21186. https://doi.org/10.1007/s11356-016-7687-9
MCDONALD, A.G. – BEALEY, W.J. – FOWLER, D. – DRAGOSITS, U. – SKIBA, U. – SMITH, R.I. – DONOVAN, R.G. – BRETT, H.E. – HEWITT, C.N. – NEMITZ, E. (2007): Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmospheric Environment 41, 8455–8467. https://doi.org/10.1016/j.atmosenv.2007.07.025
MORI, J. – SÆBØ, A. – HANSLIN, H.M. – TEANI, A. – FERRINI, F. – FINI, A. – BURCHI, G. (2015): Deposition of traffic-related air pollutants on leaves of six evergreen shrub species during a Mediterranean summer season. Urban Forestry & Urban Greening 14, 264–273. https://doi.org/10.1016/j.ufug.2015.02.008
PROBÁLD, F. (2014): The urban climate of Budapest: past, present and future. Hungarian Geographical Bulletin. 63(1) (2014) 69–79. https://doi.org/10.15201/hungeobull.63.1.6
SÆBØ, A. – POPEK, R. – NAWROT, B. – HANSLIN, H.M. – GAWRONSKA, H. – GAWRONSKI, S.W. (2012): Plant species differences in particulate matter accumulation on leaf surfaces. Science of The Total Environment 427–428, 347–354. https://doi.org/10.1016/j.scitotenv.2012.03.084
SCHMIDT, G. – SÜTÖRI-DIÓSZEGI, M. (2013): Preservation and restoration of living plant collections on the example of the Buda Arboretum of Corvinus University, Budapest. Folia Oecologica– vol. 40, no. 2 (2013). ISSN 1336-5266
SERBULA, S.M. – KALINOVIC, T.S. – ILIC, A.A. – KALINOVIC, J.V. – STEHARNIK, M.M. (2013): Assessment of airborne heavy metal pollution using Pinus spp. and Tilia spp. Aerosol and Air Quality Research. 13, 563–573. https://doi.org/10.4209/aaqr.2012.06.0153
SIMON, E. – BARANYAI, E. – BRAUN, M. – CSERHÁTI, C. – FÁBIÁN, I. – TÓTHMÉRÉSZ, B. (2014): Elemental concentrations in deposited dust on leaves along an urbanization gradient. Science of The Total Environment. 490, 514–520. https://doi.org/10.1016/j.scitotenv.2014.05.028
SIMON, E. – BRAUN, M. – VIDIC, A. – BOGYÓ, D. – FÁBIÁN, I. – TÓTHMÉRÉSZ, B. (2011): Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna. Environmental Pollution. 159, 1229–1233. https://doi.org/10.1016/j.envpol.2011.01.034
SOUDEK, P. – KINDERMAN, P. – MARŠÍK, P. – PETROVÁ, Š. – VAN, T. (2012):. Biomonitoring of air pollution in Prague using tree leaves. Journal of Food, Agriculture & Environment Vol.10 (2): 810-817. 2012
STANKOVIC, D. – IGIC, R. – SIJACIC-NIKOLIC, M. – VILOTIC, D. – PAJEVIC, S. (2009): Contents of the heavy metals nickel and lead in leaves of Paulownia elongata S.Y. Hu and Paulownia fortunei Hems. in Serbia. Arch biol sci (Beogr) 61, 827–834. https://doi.org/10.2298/ABS0904827S
ŚWIETLIK, R. – STRZELECKA, M. – TROJANOWSKA, M. (2013): Evaluation of traffic-related heavy metals emissions using noise barrier road dust analysis. Polish Journal of Environmental Studies. Vol. 22, No. 2 (2013), 561-567
SUNDVOR, I. – BALAGUER N.C. – VIANA M. – QUEROL X. – RECHE C. – AMATO F. – MELLIOS G. – GUERREIRO C. (2012): Road Traffic’s contribution to air quality in European cities. European Topic Centre Technical Paper 2012/14. http://acm.eionet.europa.eu/
SZALLER, V. – SZABÓ, V. – DIÓSZEGI, M.S. – MAGYAR, L. – HROTKÓ, K. (2014): Urban alley trees in Budapest, in: Raček, M. (Ed.), Plants in Urban Areas and Landscape. Slovak University of Agriculture in Nitra, pp. 28–31. https://doi.org/10.15414/2014.9788055212623.28-31
TOMAŠEVIĆ, M. – RAJŠIĆ, S. – ĐORĐEVIĆ, D. – TASIĆ, M. – KRSTIĆ, J. – NOVAKOVIĆ, V. (2004): Heavy metals accumulation in tree leaves from urban areas. Environmental Chemistry Letters. 2, 151–154. https://doi.org/10.1007/s10311-004-0081-8
ŢENCHE-CONSTANTINESCU, A.M. – CHIRA, D. – MADOŞA, E. – HERNEA, C. – ŢENCHE-CONSTANTINESCU, R.-V. – LALESCU, D. – BORLEA, G.F. (2015): Tilia sp. - urban trees for future. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 43, 259–264. https://doi.org/10.15835/nbha4319794
WANG, S. – HU, G. – YAN, Y. – WANG, SHUAI – YU, R. – CUI, J. (2019a): Source apportionment of metal elements in PM2.5 in a coastal city in Southeast China: Combined Pb-Sr-Nd isotopes with PMF method. Atmospheric Environment 198, 302–312. https://doi.org/10.1016/j.atmosenv.2018.10.056
WANG, S. – YU, R. – SHEN, H. – WANG, SHUAI– HU, Q. – CUI, J. – YAN, Y. – HUANG, H. – HU, G. (2019b): Chemical characteristics, sources, and formation mechanisms of PM2.5 before and during the Spring Festival in a coastal city in Southeast China. Environmental Pollution 251, 442–452. https://doi.org/10.1016/j.envpol.2019.04.050
WANG, S. (2020): Distribution characteristic, source and risk assessment of atmospheric PM2.5 in Xiamen. [PhD. Thesis], Huaqiao University (In Chinese).
YIN, S. – ZHANG, X. – YU, A. – SUN, N. – LYU, J. – ZHU, P. – LIU, C. (2019): Determining PM2.5 dry deposition velocity on plant leaves: An indirect experimental method. Urban Forestry & Urban Greening 46, 126467. https://doi.org/10.1016/j.ufug.2019.126467
YING, Q. – FENG, M. – SONG, D. – WU, L. – HU, J. – ZHANG, H. – KLEEMAN, M.J. – LI, X. (2018): Improve regional distribution and source apportionment of PM2.5 trace elements in China using inventory-observation constrained emission factors. Science of The Total Environment 624, 355–365. https://doi.org/10.1016/j.scitotenv.2017.12.138
Hungarian Meteorological Service: http://www.met.hu (accessed on 11 Feburary, 2023)
International Organization of Motor Manufactures: http://www.oica.net (accessed on 11 Feburary, 2023)
Letöltések
Megjelent
Folyóirat szám
Rovat
License
Copyright (c) 2023 Journal of Central European Green Innovation
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.