The Evaluating the Capability of Woody Plants to Capture Atmospheric Heavy Metals in Budapest

Authors

  • Haimei Chen Hungarian University of Agriculture and Life Sciences Department of Floriculture and Dendrology, Institute of Landscapes Architecture, Urban Planning and Garden Art, Villányi ut, 29-43, 1118, Budapest, Hungary Department of Agro-environment Studies, Institute of Environmental Science, Villányi ut, 29-43, 1118, Budapest, Hungary https://orcid.org/0000-0002-9008-4759
  • Levente Kardos Hungarian University of Agriculture and Life Sciences Department of Agro-environment Studies, Institute of Environmental Science, Villányi ut, 29-43, 1118, Budapest, Hungary
  • Márta Gyeviki Hungarian University of Agriculture and Life Sciences Department of Floriculture and Dendrology, Institute of Landscapes Architecture, Urban Planning and Garden Art, Villányi ut, 29-43, 1118, Budapest, Hungary
  • Károly Hrotkó Hungarian University of Agriculture and Life Sciences Department of Floriculture and Dendrology, Institute of Landscapes Architecture, Urban Planning and Garden Art, Villányi ut, 29-43, 1118, Budapest, Hungary
  • Veronika Szabó Hungarian University of Agriculture and Life Sciences Department of Floriculture and Dendrology, Institute of Landscapes Architecture, Urban Planning and Garden Art, Villányi ut, 29-43, 1118, Budapest, Hungary
  • Magdolna Sütöriné-Diószegi Hungarian University of Agriculture and Life Sciences Department of Floriculture and Dendrology, Institute of Landscapes Architecture, Urban Planning and Garden Art, Villányi ut, 29-43, 1118, Budapest, Hungary

DOI:

https://doi.org/10.33038/jcegi.3359

Keywords:

particulate matter, heavy metals, tilia tomentosa, woody plant

Abstract

Urban green infrastructure planning plays an important role in aspects of pollution reduction, such as heavy metal trapping. However, the reduction effects are both influenced by the different pollution conditions in each city and the species-specific interaction of trees and pollution. Herein, we investigated three common urban woody plants (Acer platanoides L., Fraxinus excelsior L. Westhof’s Glorie, and Tilia tomentosa Moench) in Budapest to compare their heavy metal trapping abilities from the airborne in leaf dust deposits and leaves. All samples were deconstructed by a wet digestion method. Four high traffic-related heavy metal elements (Zn, Cu, Pb, and Ni) were determined by using an atomic absorption spectrometer (AAS). The investigated results showed that the relevant concentration of all measured elements was constant in all species, namely Zn < Cu < Pb < Ni. Although the total heavy metal content in the dust deposit increased towards the end of one vegetation period, the highest percentage of total metal concentration was in the summer season as the particulate matter sources varied in each season. These indicate that woody plants are ideal candidates for pollution monitoring. All of the evaluated elements were loaded highest in the dust deposit of T. tomentosa during all sampling times, followed by A. platanoides, and the least in F. excelsior. A significant correlation between metal contents in the dust deposit and leaf was found in T. tomentosa (0.926 at a p<0.01 level). Therefore, we suggest T. tomentosa, which has better atmospheric trace element capturing capacity than A. platanoides and F. excelsior and thus it is a better option for pollution reduction in the urban area.

Author Biographies

  • Haimei Chen, Hungarian University of Agriculture and Life Sciences Department of Floriculture and Dendrology, Institute of Landscapes Architecture, Urban Planning and Garden Art, Villányi ut, 29-43, 1118, Budapest, Hungary Department of Agro-environment Studies, Institute of Environmental Science, Villányi ut, 29-43, 1118, Budapest, Hungary

    PhD student
    ellenchm@yahoo.com

  • Levente Kardos, Hungarian University of Agriculture and Life Sciences Department of Agro-environment Studies, Institute of Environmental Science, Villányi ut, 29-43, 1118, Budapest, Hungary

    kardos.levente@uni-mate.hu

  • Márta Gyeviki, Hungarian University of Agriculture and Life Sciences Department of Floriculture and Dendrology, Institute of Landscapes Architecture, Urban Planning and Garden Art, Villányi ut, 29-43, 1118, Budapest, Hungary

    gyeviki.marta@szie.hu

  • Károly Hrotkó, Hungarian University of Agriculture and Life Sciences Department of Floriculture and Dendrology, Institute of Landscapes Architecture, Urban Planning and Garden Art, Villányi ut, 29-43, 1118, Budapest, Hungary

    hrotko.karoly@uni-mate.hu

  • Veronika Szabó, Hungarian University of Agriculture and Life Sciences Department of Floriculture and Dendrology, Institute of Landscapes Architecture, Urban Planning and Garden Art, Villányi ut, 29-43, 1118, Budapest, Hungary

    szobo.veronika@uni-mate.hu

  • Magdolna Sütöriné-Diószegi, Hungarian University of Agriculture and Life Sciences Department of Floriculture and Dendrology, Institute of Landscapes Architecture, Urban Planning and Garden Art, Villányi ut, 29-43, 1118, Budapest, Hungary

    sutorine.dioszegi.magdolna@uni-mate.hu

References

ALFÖLDY, B. – OSÁN, J. – TÓTH, Z. – TÖRÖK, S. – HARBUSCH, A. – JAHN, C. – EMEIS, S. – SCHÄFER, K., (2007): Aerosol optical depth, aerosol composition and air pollution during summer and winter conditions in Budapest. Science of The Total Environment 383, 141–163. https://doi.org/10.1016/j.scitotenv.2007.04.037

ALI, H. – KHAN, E. – SAJAD, M.A. (2013): Phytoremediation of heavy metals-Concepts and applications. Chemosphere 91, 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

ANIČIĆ, M. – SPASIĆ, T. – TOMAŠEVIĆ, M. – RAJŠIĆ, S. – TASIĆ, M. (2011): Trace elements accumulation and temporal trends in leaves of urban deciduous trees (Aesculus hippocastanum and Tilia spp.). Ecological Indicators 11, 824–830. https://doi.org/10.1016/j.ecolind.2010.10.009

ANIČIĆ, M. – JOVANOVIĆ, G. – STEVIĆ, N. – DELJANIN, I. – NIKOLIĆ, M. – TOMAŠEVIĆ, M. – SAMSON, R. (2019): Leaves of common urban tree species (Aesculus hippocastanum, Acer platanoides, Betula pendula and Tilia cordata) as a measure of particle and particle-bound pollution: a 4-year study. Air Quality, Atmosphere Health 12, 1081–1090. https://doi.org/10.1007/s11869-019-00724-6

ANTISARI, L.V. – ORSINI, F. – MARCHETTI, L. – VIANELLO, G. – GIANQUINTO, G. (2015): Heavy metal accumulation in vegetables grown in urban gardens. Agronomy for Sustainable Development. 35, 1139–1147. https://doi.org/10.1007/s13593-015-0308-z

ASATI, A. – PICHHODE, M. – NIKHIL, K., (2016): Effect of Heavy Metals on Plants: An Overview. International Journal of Application or Innovation in Engineering & Management. ISSN 2319-4847. Volume 5, Issue 3, March 2016

BENÍTEZ, Á. – MEDINA, J. – VÁSQUEZ, C. – LOAIZA, T. – LUZURIAGA, Y. – CALVA, J. (2019): Lichens and Bromeliads as Bioindicators of Heavy Metal Deposition in Ecuador. Diversity 11, 28. https://doi.org/10.3390/d11020028

CATINON, M. – AYRAULT, S. – DAUDIN, L. – SEVIN, L. – ASTA, J. – TISSUT, M. – RAVANEL, P. (2008): Atmospheric inorganic contaminants and their distribution inside stem tissues of Fraxinus excelsior L. Atmospheric Environment 42, 1223–1238. https://doi.org/10.1016/j.atmosenv.2007.10.082

CAPUANA, M. (2011): Heavy metals and woody plants - biotechnologies for phytoremediation. iForest 4, 7–15. https://doi.org/10.3832/ifor0555-004

CHEN, L. – LIU, C. – ZHANG, L. – ZOU, R. – ZHANG, Z. (2017): Variation in tree species ability to capture and retain airborne fine particulate matter (PM2.5). Scientific Reports. 7, 3206. https://doi.org/10.1038/s41598-017-03360-1

CZAJKOWSKA, B. – KIELKIEWICZ, M. (2002): Linden-leaf morphology and the host-plant susceptibility to Eotetranychus tiliarium (Hermann) (Acarida: Tetranychidae), in: Bernini, F., Nannelli, R., Nuzzaci, G., de Lillo, E. (Eds.), Acarid Phylogeny and Evolution: Adaptation in Mites and Ticks. Springer Netherlands, Dordrecht, pp. 435–440. https://doi.org/10.1007/978-94-017-0611-7_45

DANIELYAN, K.E. – CHAILYAN S.G. (2019): Heavy metals. Biomedical Journal of Scientific & Technical Research. ISSN: 2574-1241 21. https://doi.org/10.26717/BJSTR.2019.21.003659

DIMOUDI, A., NIKOLOPOULOU, M., 2003. Vegetation in the urban environment: microclimatic analysis and benefits. Energy and Buildings. 35 (2003) 69–76. https://doi.org/10.1016/S0378-7788(02)00081-6

DZIERŻANOWSKI, K. – POPEK, R. – GAWROŃSKA, H. – SÆBØ, A. – GAWROŃSKI, S.W. (2011): Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. International Journal of Phytoremediation 13, 1037–1046. https://doi.org/10.1080/15226514.2011.552929

EEA, EUROPEAN ENVIRONMENT AGENCY (2022): Status report of air quality in Europe for year 2021.

EL-AMIER, Y.A. – ALGHANEM, S.M. (2018): Tree leaves as bioindicator of heavy metal pollution from soil and ambient air in urban environmental. Plant Archives. Vol. 18 No. 2, 2018 pp. 2559-2566. e-ISSN:2581-6063 (online), ISSN:0972-5210

EMAMVERDIAN, A. – DING, Y. – MOKHBERDORAN, F. – XIE, Y. (2015): Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal 2015, 1–18. https://doi.org/10.1155/2015/756120

FERENCZI, Z. – BOZÓ, L. (2017): Effect of the long-range transport on the air quality of greater Budapest area. International Journal of Environment and Pollution. Vol. 62, Nos. 2/3/4, 2017

FERENCZI, Z. – IMRE, K. – LAKATOS, M. – MOLNÁR, Á. – BOZÓ, L. – HOMOLYA, E. – GELENCSÉR, A. (2021): Long-term characterization of urban PM10 in Hungary. Aerosol Air Qual. Res. 21, 210048. https://doi.org/10.4209/aaqr.210048

HOODAJI, M. – ATAABADI, M. – NAJAFI, P. (2012): Biomonitoring of airborne heavy metal contamination, in: Khare, M. (Ed.), Air Pollution - Monitoring, Modelling, Health and Control. InTech. https://doi.org/10.5772/32963

HROTKÓ, K. – GYEVIKI, M. – SÜTÖRINÉ, D.M. – MAGYAR, L. – MÉSZÁROS, R. – HONFI, P. – KARDOS, L. (2021): Foliar dust and heavy metal deposit on leaves of urban trees in Budapest (Hungary). Environmental Geochemistry Health 43, 1927–1940. https://doi.org/10.1007/s10653-020-00769-y

JEANJEAN, A.P.R. – MONKS, P.S. – LEIGH, R.J. (2016): Modelling the effectiveness of urban trees and grass on PM2.5 reduction via dispersion and deposition at a city scale. Atmospheric Environment 147, 1–10. https://doi.org/10.1016/j.atmosenv.2016.09.033

KOSIOREK, M. – MODRZEWSKA, B. – WYSZKOWSKI, M. (2016): Levels of selected trace elements in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula L.), and Norway maple (Acer platanoides L.) in an urbanized environment. Environ Monit Assess 188, 598. https://doi.org/10.1007/s10661-016-5600-0

KRUTUL, D. – ZIELENKIEWICZ, T. – ZAWADZKI, J. – RADOMSKI, A. – ANTCZAK, A. – DROŻDŻEK, M. (2014): Influence of urban environment orginated heavy metal pollution on the extractives and mineral substances content in bark and wood of oak (Quercus robur L.). Wood Research. 59 (1): 2014 177–190

KWON, K.-J. – URRINTUYA, O. – KIM, S.-Y. – YANG, J.-C. – SUNG, J.-W. – PARK, B.-J. (2020): Removal Potential of Particulate Matter of 12 Woody Plant Species for Landscape Planting. J. People Plants Environ 23, 647–654. https://doi.org/10.11628/ksppe.2020.23.6.647

LI, C. – DU, D. – GAN, Y. – JI, S. – WANG, L. – CHANG, M. – LIU, J. (2022): Foliar dust as a reliable environmental monitor of heavy metal pollution in comparison to plant leaves and soil in urban areas. Chemosphere 287, 132341. https://doi.org/10.1016/j.chemosphere.2021.132341

LIANG, D. – MA, C. – WANG, YUN-QI – WANG, YU-JIE – CHEN-XI, Z. (2016): Quantifying PM2.5 capture capability of greening trees based on leaf factors analyzing. Environmental Science and Pollution Research. 23, 21176–21186. https://doi.org/10.1007/s11356-016-7687-9

MCDONALD, A.G. – BEALEY, W.J. – FOWLER, D. – DRAGOSITS, U. – SKIBA, U. – SMITH, R.I. – DONOVAN, R.G. – BRETT, H.E. – HEWITT, C.N. – NEMITZ, E. (2007): Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmospheric Environment 41, 8455–8467. https://doi.org/10.1016/j.atmosenv.2007.07.025

MORI, J. – SÆBØ, A. – HANSLIN, H.M. – TEANI, A. – FERRINI, F. – FINI, A. – BURCHI, G. (2015): Deposition of traffic-related air pollutants on leaves of six evergreen shrub species during a Mediterranean summer season. Urban Forestry & Urban Greening 14, 264–273. https://doi.org/10.1016/j.ufug.2015.02.008

PROBÁLD, F. (2014): The urban climate of Budapest: past, present and future. Hungarian Geographical Bulletin. 63(1) (2014) 69–79. https://doi.org/10.15201/hungeobull.63.1.6

SÆBØ, A. – POPEK, R. – NAWROT, B. – HANSLIN, H.M. – GAWRONSKA, H. – GAWRONSKI, S.W. (2012): Plant species differences in particulate matter accumulation on leaf surfaces. Science of The Total Environment 427–428, 347–354. https://doi.org/10.1016/j.scitotenv.2012.03.084

SCHMIDT, G. – SÜTÖRI-DIÓSZEGI, M. (2013): Preservation and restoration of living plant collections on the example of the Buda Arboretum of Corvinus University, Budapest. Folia Oecologica– vol. 40, no. 2 (2013). ISSN 1336-5266

SERBULA, S.M. – KALINOVIC, T.S. – ILIC, A.A. – KALINOVIC, J.V. – STEHARNIK, M.M. (2013): Assessment of airborne heavy metal pollution using Pinus spp. and Tilia spp. Aerosol and Air Quality Research. 13, 563–573. https://doi.org/10.4209/aaqr.2012.06.0153

SIMON, E. – BARANYAI, E. – BRAUN, M. – CSERHÁTI, C. – FÁBIÁN, I. – TÓTHMÉRÉSZ, B. (2014): Elemental concentrations in deposited dust on leaves along an urbanization gradient. Science of The Total Environment. 490, 514–520. https://doi.org/10.1016/j.scitotenv.2014.05.028

SIMON, E. – BRAUN, M. – VIDIC, A. – BOGYÓ, D. – FÁBIÁN, I. – TÓTHMÉRÉSZ, B. (2011): Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna. Environmental Pollution. 159, 1229–1233. https://doi.org/10.1016/j.envpol.2011.01.034

SOUDEK, P. – KINDERMAN, P. – MARŠÍK, P. – PETROVÁ, Š. – VAN, T. (2012):. Biomonitoring of air pollution in Prague using tree leaves. Journal of Food, Agriculture & Environment Vol.10 (2): 810-817. 2012

STANKOVIC, D. – IGIC, R. – SIJACIC-NIKOLIC, M. – VILOTIC, D. – PAJEVIC, S. (2009): Contents of the heavy metals nickel and lead in leaves of Paulownia elongata S.Y. Hu and Paulownia fortunei Hems. in Serbia. Arch biol sci (Beogr) 61, 827–834. https://doi.org/10.2298/ABS0904827S

ŚWIETLIK, R. – STRZELECKA, M. – TROJANOWSKA, M. (2013): Evaluation of traffic-related heavy metals emissions using noise barrier road dust analysis. Polish Journal of Environmental Studies. Vol. 22, No. 2 (2013), 561-567

SUNDVOR, I. – BALAGUER N.C. – VIANA M. – QUEROL X. – RECHE C. – AMATO F. – MELLIOS G. – GUERREIRO C. (2012): Road Traffic’s contribution to air quality in European cities. European Topic Centre Technical Paper 2012/14. http://acm.eionet.europa.eu/

SZALLER, V. – SZABÓ, V. – DIÓSZEGI, M.S. – MAGYAR, L. – HROTKÓ, K. (2014): Urban alley trees in Budapest, in: Raček, M. (Ed.), Plants in Urban Areas and Landscape. Slovak University of Agriculture in Nitra, pp. 28–31. https://doi.org/10.15414/2014.9788055212623.28-31

TOMAŠEVIĆ, M. – RAJŠIĆ, S. – ĐORĐEVIĆ, D. – TASIĆ, M. – KRSTIĆ, J. – NOVAKOVIĆ, V. (2004): Heavy metals accumulation in tree leaves from urban areas. Environmental Chemistry Letters. 2, 151–154. https://doi.org/10.1007/s10311-004-0081-8

ŢENCHE-CONSTANTINESCU, A.M. – CHIRA, D. – MADOŞA, E. – HERNEA, C. – ŢENCHE-CONSTANTINESCU, R.-V. – LALESCU, D. – BORLEA, G.F. (2015): Tilia sp. - urban trees for future. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 43, 259–264. https://doi.org/10.15835/nbha4319794

WANG, S. – HU, G. – YAN, Y. – WANG, SHUAI – YU, R. – CUI, J. (2019a): Source apportionment of metal elements in PM2.5 in a coastal city in Southeast China: Combined Pb-Sr-Nd isotopes with PMF method. Atmospheric Environment 198, 302–312. https://doi.org/10.1016/j.atmosenv.2018.10.056

WANG, S. – YU, R. – SHEN, H. – WANG, SHUAI– HU, Q. – CUI, J. – YAN, Y. – HUANG, H. – HU, G. (2019b): Chemical characteristics, sources, and formation mechanisms of PM2.5 before and during the Spring Festival in a coastal city in Southeast China. Environmental Pollution 251, 442–452. https://doi.org/10.1016/j.envpol.2019.04.050

WANG, S. (2020): Distribution characteristic, source and risk assessment of atmospheric PM2.5 in Xiamen. [PhD. Thesis], Huaqiao University (In Chinese).

YIN, S. – ZHANG, X. – YU, A. – SUN, N. – LYU, J. – ZHU, P. – LIU, C. (2019): Determining PM2.5 dry deposition velocity on plant leaves: An indirect experimental method. Urban Forestry & Urban Greening 46, 126467. https://doi.org/10.1016/j.ufug.2019.126467

YING, Q. – FENG, M. – SONG, D. – WU, L. – HU, J. – ZHANG, H. – KLEEMAN, M.J. – LI, X. (2018): Improve regional distribution and source apportionment of PM2.5 trace elements in China using inventory-observation constrained emission factors. Science of The Total Environment 624, 355–365. https://doi.org/10.1016/j.scitotenv.2017.12.138

Hungarian Meteorological Service: http://www.met.hu (accessed on 11 Feburary, 2023)

International Organization of Motor Manufactures: http://www.oica.net (accessed on 11 Feburary, 2023)

Downloads

Published

2023-06-14

Issue

Section

Cikk szövege

How to Cite

The Evaluating the Capability of Woody Plants to Capture Atmospheric Heavy Metals in Budapest. (2023). Journal of Central European Green Innovation, 11(1), 67-81. https://doi.org/10.33038/jcegi.3359