Preliminary finding about sugar composition and organic acid structure of woodland grape (Vitis sylvestris GMEL.)
Kulcsszavak:
minerals, sugars, organic acids, woodland grapeAbsztrakt
Kutatásunkban 6 ligeti szőlő genotípust és termesztett kerti szőlő fajtákat hasonlítottunk össze illetve ezek cukor-, valamint savtartalmát mértük HPLC-vel (High Performance Liquid Chromatography) és AAS-el (Atomic Absorption Spectroscopy) két különböző évben (2014ben és 2015-ben). A cukrok közül a glükóz és a fruktóz volt legnagyobb mértékben jelen a Vitis sylvestris GMEL.és a Vitis vinifera L. fajták (Olasz rizling, Pinot noir) mustjaiban. Mindkét évben a ligeti szőlő mustjának összes savtartalmát nézve a borkősav mennyisége alacsonyabb volt, mint az almasavé. A 2014-es évben a ligeti szőlő beltartalmi értékeit vizsgálva a borostyánkősav is kimutatható volt, ami a kerti szőlő fajták mustjaiból hiányzott. Az AAS vizsgálatok kimutatták, hogy az összes ásványi anyagot tekintve a kálium mértéke volt a legmagasabb a többi elemhez képest. Az elsődleges vizsgálatok alapján elmondhatjuk, hogy jelentős különbségek vannak a Vitis sylvestris GMEL és a Vitis vinifera L. fajták mustjának sav-, cukor- és ásványi elem összetétele között.
Hivatkozások
Bartha, D. and Kevey, B. 2010. Ligeti szőlő-Vitis sylvestris, TILIA XV, Chapter, NyME Press, Sopron, 342–375. (in Hungarian)
Belitz, H. D. and Grosch, W. 1992. Quimica de losalimentos. Zaragoza/Spain, Acribia. (in Spanish)
Birch, R. M. and Walker, G. M., 2000. Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme and Microbial Technology. 26 (9–10) 678–687. https://doi.org/10.1016/S0141-0229(00)00159-9
Boulton, R. 1980. The general relationship between potassium, sodium and pH in grape juice and wine. Am. J. Enol. Vitic. 31 (2) 182–186. https://doi.org/10.5344/ajev.1980.31.2.182
Brownlee, C. 2006. A toast to healthy hearts: wine compounds benefit blood vessels. Sci. News. 170 (23) 356–357. https://doi.org/10.2307/4017612
Caccamo, F., Carfagnini, G., Di Corcia, A. and Samperi, R. 1986. Improved high-performance liquid chromatographic assay for determining organic acids in wines. J. Chromatogr. 362. 47–53. https://doi.org/10.1016/S0021-9673(01)86949-1
Catalgol, B., Batirel, S., Taga, Y. and Ozer, N. 2012. Resveratrol: French paradox revisited. Front.Pharmacol. 3. 141. https://doi.org/10.3389/fphar.2012.00141
Castellari, M., Versari A., Spinabelli U., Galassi S. and Amati, A. J. 2000. An improved HPLC method for the analysis of organic acids, carbohydrates, and alcohols in grape musts and wines. J. Liq. Chromatogr. Relat. Technol. 23 (13) 2047–2056. https://doi.org/10.1081/JLC-100100472
Catanese, N. 2013. Could red wine save your life? Wellness Magazine. March. Centers for Disease Control and Prevention. 2014. Heart Diseas. Facts. 〈http://www.cdc.gov/heartdisease/facts.htm〉 (accessed 20.08.14).
Conde, C., Silva, P., Fontes, N., Dias, A. C. P., Tavares R. M., Sousa M. J., Agasse, A., Delrot S.and Gerós, H. 2007. Biochemical changes throughout grape berry development and fruit and wine quality. Food. 1. 1–22.
Crippen, D. D. and Morrison, J. C. 1986 The effects of sun exposure on the compositional development of cabernet sauvignon berries. Am. J. Enol. Viticult. 37 (4) 235–242. https://doi.org/10.5344/ajev.1986.37.4.235
Das, D., Mukherjee, S. and Ray, D. 2011. Erratum to: resveratrol and redwine, healthy heart and long evity. Heart Fail Rev.16 (4) 425–435. https://doi.org/10.1007/s10741-011-9234-6
De Candolle, A. 1894. Termesztett növényeink eredete. Budapest/Hungary: Királyi Magyar Természettudományi Társulat, 516., 201–204. (in Hungarian)
Farkas, S. 1999. Magyarország védett növényei. Mezőgazda Kiadó, Budapest/Hungary 166–167. (in Hungarian)
Frayne, R. F., 1986. Direct analysis of the major organic components in grape must and wine using high performance liquid chromatography Am. J. Enol. Viticult. 37 (4) 281–287. https://doi.org/10.5344/ajev.1986.37.4.281
García-Romero, E., Sánchez-Munoz, G., Martín-Álvarez, P. J. and CabezudoIbánez, M. D. 1993. Determination of organic acids in grape musts, wines and vinegars by highperformance liquid chromatography. J. Chromatogr. 655 (1) 111–117. https://doi.org/10.1016/0021-9673(93)87018-H
Kállay, M. (2010) Borászati kémia. Borászat 2., Mezőgazda Kiadó, 12., 115. (in Hungarian)
Kliewer, W. M. 1965. Changes in concentration of glucose, fructose, and total soluble solids in flowers and berries of Vitis vinifera. American Journal of Enology and Viticulture 16 (2) 101–110. https://doi.org/10.5344/ajev.1965.16.2.101
Kliewer, W. M. 1967a. The glucose-fructose ratio of Vitis vinifera grapes. Am. J. Enol. Vitic. 18 (1) 33–41. https://doi.org/10.5344/ajev.1967.18.1.33
Kliewer, W. M. 1967b. Concentration of tartrates, malates, glucose and fructose in the fruits of the genus Vitis. Am. J.Enol. Vitic. 18 (2) 87–96. https://doi.org/10.5344/ajev.1967.18.2.87
Krebs, H. A. and Lowenstein, J. M. 1960. The tricarboxylic acid cycle. Metabolic pathways, 1. 129–203.
Kozma, P. 1991. A szőlő és termesztése I. Akadémiai Kiadó, Budapest/Hungary, 24, (in Hungarian)
Liu ,H.-F., Wu, B.-H., Fan, P.-G., Li, S.-H. and Li, J. L.-S. 2006. Sugar and acid concentrations in 98 grape cultivars analyzed by principal component analysis. J. Sci. Food Agric. 86 (10) 1526–1536. https://doi.org/10.1002/jsfa.2541
McCord, J. D., Trousdale, E. and Ryu, D. D. 1984. An Improved Sample Preparation Procedure for the Analysis of Major Organic Components in Grape Must and Wine by High Performance Liquid Chromatography. Am. J. Enol. Vitic. 35 (1) 28–29. https://doi.org/10.5344/ajev.1984.35.1.28
Mato, I., Suarez-Luque, S. and Huidobro, J. F. 2005. A review of the analytical methods to determine organic acids in grape juices and wines. Food Res. Int. 38 (10) 1175–1188. https://doi.org/10.1016/j.foodres.2005.04.007
Pasteur, L. 1859. On alcoholic fermentation. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 18 (119)239–240. https://doi.org/10.1080/14786445908642755
Pasteur, L. 1969. Studies on fermentation. Kraus Reprint. New York/United States
Peynaud, E. 1999. Enologia practica. Conocimiento y elaboracion del vino. Madrid/Spain: Mundi-Prensa.(in Spanish)
Saavedra, L. and Barbas, C. 2003. Validated capillary electrophoresismethod for smallanions measurementi n wines. Electrophoresis, 24 (12–13) 2235–2243. https://doi.org/10.1002/elps.200305415
Sabir, A., Kafkas, E. and Tangolar, S. 2010. Distribution of major sugars, acids, and total phenols in juice of five grapevine (Vitis spp.) cultivars at different stages of berry development. Spanish J. of Agric. Res. 8 (2) 425–433. https://doi.org/10.5424/sjar/2010082-1186
Terpo, A. 1986. A kultúrfajok eredete. Növényrendszertan az ökonómbotanika alapjaival I. Mezőgazdasági Kiadó, Budapest/Hungary 108–109 (in Hungarian)
Vereda, E., Garcia de Torres, A., Rivero, A. and Cano, J. M. 1998. Determination of organic acids in wines. A review. Quimica Analitica, 17. 167–175. (in Spanish)
Letöltések
Megjelent
Folyóirat szám
Rovat
License
Copyright (c) 2018 Nagy Zóra, Kocsis László, Koltai Gábor, Májer János, Dunai Attila, Dominek Ádám, Veres Áron, Jahnke Gizella

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The articel is under the Creative Commons 4.0 standard licenc: CC-BY-NC-ND-4.0. Under the following terms: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material. You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.