Különböző talajápolási módok hatása átlag alatti, átlagos és bőséges csapadék-ellátottság esetén, erózióra hajlamos hegy-völgy telepítési irányú szőlőültetvényben

Authors

  • Péter Varga NAIK Szőlészeti és Borászati Kutatóintézet, Badacsonyi Kutató Állomás, e-mail: vargapeter@mail.iif.hu (correspondence)
  • János Májer NAIK Szőlészeti és Borászati Kutatóintézet, Badacsonyi Kutató Állomás

Keywords:

duration experiment, erosion, soil cultivation method, soil and plant coverage

Abstract

For nearly a decade comparative soil cultivation trials of a duration experiment nature have been conducted at the NAIC Viticulture and Oenology Research Institute Badacsony. During our trials in 2011, 2014 and 2017 we have drawn comparisons on a slope (hill-valley directional) system between mulching with organic plant wastes, and lasting and temporary plant coverage and also mechanical soil cultivation. A special grass mixture was used for the lasting plant coverage (red fescue, ambiguous leaved fescue, tall fescue and perennial ryegrass), and we also had trials using a legume seed mixture (red clover, crimson clover, white clover, common vetch and fodder peas). For the temporary plant coverage we used Winter wheat, Triticale and weed mixtures characteristic of the area, furthermore between the rows we planted just Phacelia on its own. Our aim those years while researches were made (2011-below average of wet, 2014-ample amount of wet, 2017-average amount of wet) was to examine the effect of the treatments on soil moisture content, on the soil nutrition supply and on harvest results. It can be ascertained overall that our soils must be protected from the damaging effects of erosion, especially in the weather conditions prevailing throughout 2017, when dry periods interchanged with sudden heavy rainfall or when the year of 2014 the amount of rain was higher 50 percent. The basis for protection against erosion can be soil coverage using organic material wastes which has a favourable effect on both the soil and the plant (water and nutrition supply). The other possible solution is the application of plant coverage. The most suitable of these proved to be the special drought resistant grass mixture and the legume mixture. In comparison with the other treatments the treatment using mulching with organic plant waste and the treatment using a legume mixture showed outstanding results for soil moisture content, mineral nitrogen supply and average yield. These results also showed statistically certified increased values when compared with the results measured on the control plots.

References

Basler, P. 1992. Integrierte Production: Wiederherstellung des Ökosystems Boden. Schweizerische Zeitschift für Obst und Weinbau. 128. 12. 633–635.

Bauer, K., Fox, R. und Ziegler, B. 2004. Moderne Bodenpflege im Weinbau. Österreichischer Agrarverlag, Leopoldsdorf 28–34.

Bogoni, M., Panont, A., Valenti, L. and Scienza, A. 1995. Effects of soil physical and chemical conditions on grapevine nutritional states. Acta Horticulturae 383. 299–303. https://doi.org/10.17660/ActaHortic.1995.383.31

Boller, E. F., El Titi, A., Gendrier, J. P., Avilla, J., Jörg, E. and Malavota, C. (edit) 1998. Integrated Produktion in Europe: 20 years after the declaration of Ovronnaz. IOBC wprs Bulletin, Bulletin OILB srop. 21(1). 34.

Buckerfield, J. C. and Webster, K. A. 1996. Earthworms, mulching, soil moisture and grape yields: earthworm response to soil management practices in vineyards, Barossa Valley, South Australia, Australian and New Zealand Wine Industry Journal. 11(1). 47–53.

Fardossi, A. 2001. Einfluss von Stressfaktoren auf die Weinrebe. Der Winzer 2001. 1. 12–13.

Gulick, S. H., Grimes, D. W., Munk, D. S., Goldhamer, D. A. 1994. Cover-crop-enhanced water infiltration of a slowly permeable fine sandy loam. Soil Sci. Soc. Am. J. 58. 1539–1546. https://doi.org/10.2136/sssaj1994.03615995005800050038x

IPCC, 2001. Climate change 2001: The scientific basis. In: Contribution of working group to the third assesment report of the intergoverimental panel on climate change. (IPCC), Cambridge University Press, Cambridge. UK. 58–65.

Konduras, S., Tsialtas, T., Zioziou, E. and Nikolaou, N. 2008. Rootstock effects on the adaptive strategies of grapevine under contrasting water status: Leaf physiological and structural respronses, Agriculture, Ecosystems and Enviroment 128. 86–96. https://doi.org/10.1016/j.agee.2008.05.006

Poni, S., Lakso, A., Turner, J. and Melious, R. 1994. Interactions of crop level and late season water stress on growth and physiology of field-grown Concord grapevines, American Journal of Enology and Viticulture, 45(2). 153–157. https://doi.org/10.5344/ajev.1994.45.2.252

Poni, S., Bernizzoni, F., Civardi, S., Gatti, M., Porro, D. and Camin, F. 2009. Performance andwater-use efficiency (single-leaf vs. Whole-canopy) of wellwatered and half-stressed split-root Lambrusco grapevines grown inPo Valley (Italy). Agriculture, Ecosystems and Environment 129. 97–106. https://doi.org/10.1016/j.agee.2008.07.009

Ramos, M. C. and Martinez-Casanovas, J. A. 2006. Impact of land levelling on soil moisture and runoff variability in vineyards under different rainfall distributions in a Mediterranean climate and its influence on crop productivity. Journal of Hydrology 321. 131–146. https://doi.org/10.1016/j.jhydrol.2005.07.055

Sicher, L., Lorigoni, A. and Stringari, G. 1995. Soil management effects on nutritional status and grapevine performance. Acta Hort. 383. 73–82. https://doi.org/10.17660/ActaHortic.1995.383.8

Varga, I. 1994. A talajtakarás szerepe a dombvidéki szőlőtermesztésben. Kandidátusi Értekezés, Eger. 1–112.

Wheaton, A. D., Mckenzie, B. M. and Tisdall, J. M. 2007. Management to increase the depth of soft soil improves soil conditions and grapevine performance in an irrigated vineyard. Soil and Tillage Research 98. 68–80. https://doi.org/10.1016/j.still.2007.10.007

Zanathy, G. 1998. Környezetkímélő talajápolás. Kertészet és Szőlészet. 61(23). 13.

Published

2020-03-06

Issue

Section

Articles