Correlations between soil organic carbon properties and soil microorganism indices
Keywords:
soil organic carbon (SOC), E4/E6 method, microbial biomass carbon (MBC), fluorescein diacetate (FDA) hydrolysing activity, long-term fertilization experimentAbstract
The connection between soil organic matter (SOM) and microorganisms has been investigated for a long time. On a global scale the microbial biomass (MB) in the soil is mainly influenced by the SOM content. Among other activities, microorganisms take part in the decomposition and formation of SOM. In the present research, soils from a long-term field trial involving organic and inorganic N fertilization (IOSDV, Keszthely, Hungary) were used to investigate the relationship between the amount and quality of SOM and the amount and activity of MB. The short-term (MB) and long-term (SOM) effects of fertilization on soils were also investigated. The quantity of microorganisms (microbial biomass carbon – MBC or Cmic) was determined using the chloroform-fumigation extraction method, while their activity was measured by means of fluorescein-diacetate (FDA) hydrolysis. The quality of SOM was measured using the E4/E6 method. The determination of MBC and soil organic carbon (SOC or Corg) revealed that the Cmic/Corg ratio differed in the various treatments and was affected by organic amendments but not by the inorganic N fertilization dose. The Cmic/Corg ratio was the highest in treatments involving crop residue incorporation and the lowest in the unamended treatments. Similarly, the amount and activity of MB did not depend on the dose of inorganic N fertilization but was influenced by organic amendments. The results between the Cmic/Corg ratio and the amount and activity of microorganisms showed a correlation.
References
Adam, G. and Duncan, H. 2001. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 33 (7–8) 943–951. https://doi.org/10.1016/S0038-0717(00)00244-3
Alef, K. and Nannipieri, P. (eds.) 1998. Methods in applied soil microbiology and biochemistry. Academic Press Limited, London. 232–233.
Anderson, T.-H. 2003. Microbial eco-physiological indicators to assess soil quality. Agriculture, Ecosystems and Environment. 98 (1–3) 285–293. https://doi.org/10.1016/S0167-8809(03)00088-4
Anderson, T.-H. and Domsch, K.H. 2010. Soil microbial biomass: The eco-physiological approach. Soil Biol. Biochem. 42 (12) 2039–2043. https://doi.org/10.1016/j.soilbio.2010.06.026
Bíró, B. et al. 2014. Vertical and horizontal distributions of microbial abundances and enzymatic activities in propylene-glycol-affected soils. Environ. Sci. Pollut. Res. 21 (15) 9095–9108. https://doi.org/10.1007/s11356-014-2686-1
Blagodatskaya, E. and Kuzyakov, Y. 2013. Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biol. Biochem. 67. 192–211. https://doi.org/10.1016/j.soilbio.2013.08.024
Blagodatsky, S. A., Heinemeyer, O. and Richter, J. 2000. Estimating the active and total soil microbial biomass by kinetic respiration analysis. Biol Fertil Soils. 32. 73–81. https://doi.org/10.1007/s003740000219
Chen, B., Liu, E., Tian, Q., Yan, C. and Zhang, Y. 2014. Soil nitrogen dynamics and crop residues. A review. Agron. Sustain. Dev. 34 (2) 429–442. https://doi.org/10.1007/s13593-014-0207-8
Cheng, F., Peng, X., Zhao, P., Yuan, J., Zhong, C., Cheng, Y., Cui, C. and Zhang, S. 2013. Soil microbial biomass, basal respiration and enzyme activity of main forest types in the Qinling Mountains. PLoS ONE 8 (6) e67353. https://doi.org/10.1371/journal.pone.0067353
Cleveland, C. C. and Liptzin, D. 2007. C:N:P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass? Biogeochemistry. 85. 235–252. https://doi.org/10.1007/s10533-007-9132-0
Enev, V., Pospilova, L., Klucakova, M., Liptaj, T. and Doskocil, L. 2014. Spectral characterization of selected humic substances. Soil & Water Research. 9 (1) 9–17. https://doi.org/10.17221/39/2013-SWR
Fierer, N., Stickland, M. S., Liptzin, D., Bradford, M. A. and Cleveland, C. C. 2009. Global patterns in belowground communities. Ecology Letters. 12 (11) 1238–1249. https://doi.org/10.1111/j.1461-0248.2009.01360.x
Filep, T., Zacháry, D. and Balog, K. 2016. Assessment of soil quality of arable soils in Hungary using DRIFT spectroscopy and chemometrics. Vibrational Spectroscopy. 84. 16–23. https://doi.org/10.1016/j.vibspec.2016.02.005
Geisseler, D. and Scow, K. M. 2014. Long-term effects of mineral fertilizers on soil microorganisms - A review. Soil Biol. Biochem. 75. 54–63. https://doi.org/10.1016/j.soilbio.2014.03.023
Kautz, T, Wirth, S. and Ellmer, F. 2004. Microbial activity in a sandy arable soil is governed by the fertilization regime. European Journal of Soil Biology. 40 (2) 87–94. https://doi.org/10.1016/j.ejsobi.2004.10.001
Kononova, M. M. 1966. Soil organic matter. Pergamon Press Ltd, Oxford, p. 544.
Kallenbach, C. and Grandy, A. S. 2011. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: A meta-analysis. Agriculture, Ecosystem and Environment. 144 (1) 241–252. https://doi.org/10.1016/j.agee.2011.08.020
Kismányoky, T. és Balázs, J. 1996. Keszthelyi tartamkísérletek. Pannon Agrártudományi Egyetem, Keszthely. 37–41.
Kuzyakov, Y. 2010: Priming effects: Interactions between living and dead organic matter. Soil Biol. Biochem. 42 (9) 1363–1371. https://doi.org/10.1016/j.soilbio.2010.04.003
Kuzyakov, Y., Friedel, J.K., Stahr, K. 2000. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32 (11–12) 1485–1498. https://doi.org/10.1016/S0038-0717(00)00084-5
Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science. 304 (5677) 1623–1627. https://doi.org/10.1126/science.1097396
Lancashire, P. D., Bleiholder, H., Van Den Boom, T., Langelüddecke, P., Stauss, R., Weber, E. and Witzenberger, A. 1991. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 119 (3) 561–601. https://doi.org/10.1111/j.1744-7348.1991.tb04895.x
MSZ 08-0452:1980: "Szervesanyag-tartalom meghatározás talajban".
Nadi, M. 2012. Characterization of soil humic substances in Hungarian and Iranian soils. PhD Dissertation, Szent István University, Gödöllő.
Nicholson, F. et al. 2014. Straw incorporation review. Research Review 81. https://doi.org/10.13140/RG.2.1.2364.2721
Paterson, A., Midwood, A. J. and Millard, P. 2009. Through the eye of the needle: a review of isotope approaches to quantify microbial processes mediating soil carbon balance. New Phytologist 184 (1) 19–33. https://doi.org/10.1111/j.1469-8137.2009.03001.x
Paul, E. A. (editor) 2007. Soil microbiology, ecology, and biochemistry 3rd ed. Elsevier Inc., New York. p. 286.
Prosser et al. 2007. The role of ecological theory in microbial ecology. Nature Reviews Microbiology. 5 (5) 384–392. https://doi.org/10.1038/nrmicro1643
Rees, R. M., Ball, B., Watson, C. and Campbell, C. 2001. Sustainable management of soil organic matter. CABI Publishing, New York, USA. https://doi.org/10.1079/9780851994659.0000
Reeves, D. W. 1997. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil & Tillage Research. 43 (1–2) 131–167. https://doi.org/10.1016/S0167-1987(97)00038-X
Schnürer, J. and Rosswall, T. 1982. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Envir. Microb. 43 (6) 1256–1261. https://doi.org/10.1128/aem.43.6.1256-1261.1982
Smith, P., Fang, C. M., Dawson, J. J. C. and Moncrieff, J. B. 2008. Impact of global warming on soil organic carbon. Adv. Agron. 97. 1–43. https://doi.org/10.1016/S0065-2113(07)00001-6
Sparling, G. P. 1992. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes of soil organic matter. Austr. J. Soil Res. 30 (2) 195–207. https://doi.org/10.1071/SR9920195
Ussiri, D. A. and Lal, R. 2013. Land Management Effects on carbon sequestration and soil properties in reclaimed farmland of Eastern Ohio, USA. Open J. Soil Science. 3 (1) 46–57. https://doi.org/10.4236/ojss.2013.31006
Tan, B., Fan, J., He, Y., Luo, S. and Peng, X. 2014. Possible effect of soil organic carbon on its own turnover: A negative feedback. Soil Biol. Biochem. 69. 313–319. https://doi.org/10.1016/j.soilbio.2013.11.017
Vance, E. D., Brookes, P. C. and Jenkinson, D. S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19 (6) 703–707. https://doi.org/10.1016/0038-0717(87)90052-6
Villányi, I., Füzy, A., Angerer, I. and Biró, B. 2006. Total catabolic enzyme activity of microbial communities. Fluorescein diacetate analysis (FDA). In: Jones, D. L. (ed.): Understanding and modelling plant-soil interactions in the rhizosphere environment. Handbook of methods used in rhizosphere research. 441–442. Swiss Federal Research Institute WSL. Birmensdorf.
Word Reference Base (WRB) FAO, 2014. http://www.fao.org/soils-portal/soil-survey/soil-classification/world-reference-base/en/
Zadock, J. C., Chang, T. T. and Konzak, C. F. 1974. A decimal code for the growth stages of cereals. Weed Research. 14 (6) 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Kökény Mónika, Tóth Zoltán, Csitári Gábor

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Cikkre a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).