Transcriptome Analysis of the Phytophthora Infestans Induced Stress-Response in Different Potato Cultivars

Authors

Keywords:

Phytophthora infestans, potatoe, transcriptome analysis, resistance

Abstract

Late blight, caused by the oomycete fungus Phytophthora infestans (Mont.) De Bary, is one of the most dangerous diseases of potatoes. A number of resistance genes have been identified in wild Solanum species, of which 11 race-specific P. infestans resistance genes derived from Solanum demissum are the most widely used in potato improvement. Our previous analyses have shown that most of the 11 R genes are present in cultivar White Lady (WL). In the present research program, in addition to WL, which has high resistance to late blight, we used the cultivar Kastia, described by Gergely (2004) as having good horizontal resistance, and a susceptible cultivar, Sárvári borostyán, to compare by transcriptome analysis their responses to P. infestans inoculation. The transcriptome analysis was performed on purified RNA from leaf samples taken before inoculation with P. infestans isolate MP-1548 (control) and 18, 24, 48 and 72 h after inoculation. The infection experiment demonstrated the expected resistance of WL and susceptibility of Sárvári borostyán, but Kastia showed the typical symptoms of Phytophthora infection. Short reads of each RNA sequence were aligned to the long read transcriptome of an in vitro White Lady plant and over 100 000 transcripts per sequencings were identified. The stress response of the three cultivars to P. infestans infection was characterized by comparing these gene collections. Our analyses revealed overall differences in the response of resistant and susceptible cultivars to P. infestans inoculation.

Author Biographies

  • János Taller, MATE Genetika és Biotechnológia Intézet

    correspondence
    taller.janos@uni-mate.hu

  • Erzsébet Nagy, MATE Genetika és Biotechnológia Intézet

    nagy.erzsebet@uni-mate.hu

  • Esther Ijeoma Idogwu, MATE Genetika és Biotechnológia Intézet

    idogwu.esther.ijeoma@phd.uni-mate.hu

  • István Wolf, MATE Agrárcsoport Kft.

    wolfistvan01@gmail.com

  • Zsolt Polgár, MATE Növénytermesztési Intézet

    polgar.zsolt@uni-mate.hu

  • Krisztián Frank, MATE Agrárcsoport Kft.

    frank.krisztian@uni-mate.hu

References

Bu, D., Luo, H., Huo, P., Wang, Z., Zhang, S., He, Z., Kong, L. (2021). KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Research. 49 (W1), W317–W325. https://doi.org/10.1093/nar/gkab447

DeYoung, B. J., Innes, R. W. 2006. Plant NBS-LRR proteins inpathogen sensing and host defense. Nature Immunology. 7, 1243–1249. https://doi.org/10.1038/ni1410

Gergely, L. 2004. Burgonyafajták rezisztenciavizsgálata fitoftóra- (Phytophthora infestans (Mont.) de Bary) fertőzéssel szemben és egyes környezeti tényezők hatása a betegség-ellenállóságra. PhD disszertáció. Veszprémi Egyetem, könyvtár.

Hajianfar, R. 2014. Analysis of the genetic background of resistance in potato with special attention to late blight (P. infestans) resistance. PhD thesis

Haverkort, A., Struik, P., Visser, R., Jacobsen, E. 2009. Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Research. 52 (3) 249–264. https://doi.org/10.1007/s11540-009-9136-3

Jones, J. D. G., Dangl, J. L. 2006. The plant immune system. Nature. 444, 323–329. https://doi.org/10.1038/nature05286

Love, M. I., Huber, W., Anders, S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology. 15, 1–21. https://doi.org/10.1186/s13059-014-0550-8

Martin, G. B., Bogdanove, A. J., Sessa, G. 2003. Understanding thefunctions of plant disease resistance proteins. Annual Review of Plant Biology. 54, 23–61. https://doi.org/10.1146/annurev.arplant.54.031902.135035

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., Kingsford, C. 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods. 14 (4), 417–419. https://doi.org/10.1038/nmeth.4197

van der Biezen, E. A., Jones, J. D. G. 1998. The NB-ARC domain:a novel signalling motif shared by plant resistance gene productsand regulators of cell death in animals. Current Biology. 8 (7), R225–R227. https://doi.org/10.1016/S0960-9822(98)70145-9

Xie, Y., Wu, G., Tang, J., Luo, R., Patterson, J., Liu, S., Huang, W., He, G., Gu, S., Li, S., Zhou, X., Lam, T. W., Li, Y., Xu, X., Wong, G. K.-S., Wang, J. 2014. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics. 30 (12), 1660–1666. https://doi.org/10.1093/bioinformatics/btu077

Published

2024-06-28