Macro-, mesoelement and sodium content of plant parts of energy willows irrigated with effluent water of agricultural origin

Authors

  • Ildikó Kolozsvári Research Center for Irrigation and Water Management, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-5540 Szarvas, Anna-liget Str. 35., Hungary; Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Páter Károly Str. 1., Hungary, e-mail: Kolozsvari.Ildiko@uni-mate.hu https://orcid.org/0000-0003-0313-4947
  • Ágnes Kun Research Center for Irrigation and Water Management, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-5540 Szarvas, Anna-liget Str. 35., Hungary
  • Mihály Jancsó Research Center for Irrigation and Water Management, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-5540 Szarvas, Anna-liget Str. 35., Hungary https://orcid.org/0000-0003-1934-9686
  • Csaba Bozán Research Center for Irrigation and Water Management, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-5540 Szarvas, Anna-liget Str. 35., Hungary
  • Csaba Gyuricza Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Páter Károly Str. 1., Hungary

DOI:

https://doi.org/10.18380/SZIE.COLUM.2022.9.2.91

Keywords:

effluent water, irrigation, energy willow, mineral content

Abstract

Irrigation of recycled water can be considered as an element of integrated water management, in which the nutrients in the water are used and decomposed by natural processes, while water retention is realized at the local level. In our study, we used the effluent of an intensive African catfish farm for irrigation. The farm uses thermal water for fish farming, which is characterized by a high sodium content. At the same time, the effluent is rich in organic matter and minerals. The planting of the willow plants in the study area, which is close to 3 ha, took place in the spring of 2014 with a variety candidate 'Naperti'. During the experiment, seven treatments were set up, of which one was non-irrigated, three were irrigated with the water of the Körös oxbow lake and three were irrigated with the effluent water. Three doses of irrigation water (15, 30, 60 mm) were applied to the one-week irrigation intervals with a microspray irrigation system. At the end of the growing season, samples of the plant parts (leaf, stem, root) were collected, during which mineral element analysis was performed with special regard to nitrogen, phosphorus, potassium, calcium, magnesium and sodium levels. The results of the study showed a significant difference in macroelements only for nitrogen for all plant parts. However, there was no significant difference in case of the mesoelements. In the case of sodium, compared to the leaf and stem plant samples, the root part accumulated a significant amount of salt, especially in the samples irrigated with 30 mm effluent water, where the Na content reached 521 mg/kg

Author Biography

  • Ildikó Kolozsvári, Research Center for Irrigation and Water Management, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-5540 Szarvas, Anna-liget Str. 35., Hungary; Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Páter Károly Str. 1., Hungary, e-mail: Kolozsvari.Ildiko@uni-mate.hu

    corresponding author

References

Abbas, R. J. (2010). Effect of using Fenugreek, parsley and Sweet Basil seeds as feed additives on the performance of broiler chickens. International Journal of Poultry Science 9(3), 278-282.

Abdelraouf, R. E. (2019). Reuse of Fish Farm Drainage Water in Irrigation. In A. M. Negm (Ed.), Unconventional water resources and agriculture in egypt (pp. 393–410). Cham: Springer In- ternational Publishing. doi: https://doi.org/10.1007/698_2017_92

Alam, M. A., Juraimi, A. S., Rafii, M. Y., & Hamid, A. A. (2015). Effect of Salinity on Biomass Yield and Physiological and Stem-Root Anatomical Characteristics of Purslane (Portulaca oleracea L.) Accessions. BioMed Research International 2015(1), 1-15. doi: https://doi.org/10.1155/2015/105695

Azeem, A., Javed, Q., Sun, J., Nawaz, M. I., Ullah, I., Kama, R., & Du, D. (2020). Functional traits of okra cultivars (Chinese green and Chinese red) under salt stress. Folia Horticulturae 32(2), 159-170. doi: https://doi.org/10.2478/fhort-2020-0015

Bekmirzaev, G., Ouddane, B., Beltrao, J., Khamidov, M., Fujii, Y., & Sugiyama, A. (2021). Effects of Salinity on the Macro- and Micronutrient Contents of a Halophytic Plant Species (Portu- laca oleracea L.). Land 10(5), 481. doi: https://doi.org/10.3390/land10050481

Bernstein, N., Kravchik, M., & Dudai, N. (2010). Salinity-induced changes in essential oil, pigments and salts accumulation in sweet basil (Ocimum basilicum) in relation to alterations of morphological development. Annals of Applied Biology 156(2), 167-177. doi: https://doi.org/10.1111/j.1744-7348.2009.00376.x

Bistgani, Z. E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F., & Morshedloo, M. R. (2019). Effect of salinity stress on the physiological characteristics, phenolic compounds and an- tioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products 135, 311-320. doi: https://doi.org/10.1016/j.indcrop.2019.04.055

Caliskan, O., Kurt, D., Temizel, K. E., & Odabas, M. S. (2017, nov). Effect of Salt Stress and Irrigation Water on Growth and Development of Sweet Basil (Ocimum basilicum L.). Open Agriculture 2(1), 589-594. doi: https://doi.org/10.1515/opag-2017-0062

Castro, R. S., Borges Azevedo, C. M., & Bezerra-Neto, F. (2006). Increasing cherry tomato yield using fish effluent as irrigation water in Northeast Brazil. Scientia Horticulturae 110(1), 44- 50. Retrieved from https://www.sciencedirect.com/science/article/pii/S0304423806002366 doi: https://doi.org/10.1016/j.scienta.2006.06.006

da Rocha, A. F., Biazzetti Filho, M. L., Stech, M. R., & da Silva, R. P. (2017). Produção de alface em sistemas de aquaponia e bioflocos com jundiá Rhamdia quelen. Boletim do Instituto de Pesca 43(Especial), 64-73. doi: https://doi.org/10.20950/1678-2305.2017.64.73

del Carmen Rodríguez-Hernández, M., Morcillo, L., & Garmendia, I. (2021). Sensitivity of quinoa cv. ‘Titicaca’ to low salinity conditions. Folia Horticulturae 33(1), 135-145. doi: https://doi.org/10.2478/fhort-2021-0010

Filep, G. (1999). Talajtani alapismeretek I. In (p. 77). Debrecen: Debreceni Agrártudományi Egyetem.

He, J., You, X., & Qin, L. (2021). High Salinity Reduces Plant Growth and Photosynthetic Performance but Enhances Certain Nutritional Quality of C4 Halophyte Portulaca oleracea L. Grown Hydroponically Under LED Lighting. Frontiers in Plant Science 12(1), 651341. doi: https://doi.org/10.3389/fpls.2021.651341

Heidari, M. (2012). Effects of salinity stress on growth, chlorophyll content and osmotic components of two basil (Ocimum basilicum L.) genotypes. African Journal of Biotechnology 11(2), 379-384. doi: https://doi.org/10.5897/AJB11.2572

Hoppe, B. (2009). Handbuch des Arznei-und Gewürzpflanzenbaus Band 2. In (p. 140). Bernburg: Verein für Arznei-und Gewürzpflanzen Saluplanta.

Hundley, G. M. C., Navarro, R. D., Figueiredo, C. M. G., Navarro, F. K. S. P., Pereira, M. M., Filho, O. P. R., & Filho, J. T. S. (2013). Aproveitamento do efluente da produção de tilápia do Nilo para o crescimento de manjericão (Origanum basilicum) e manjerona (Origanum majorana) em sistemas de aquaponia. Revista Brasileira de Agropecuária Sustentável 3(1), 51-55. doi: https://doi.org/10.21206/rbas.v3i1.188

Ibadzade, M., Kun, Á., Székely, Á., Szalóki, T., Penksza, K., & Jancsó, M. (2020). The influence of irrigation with intensive fish farm water on the quality indicators of aerobic rice (Oryza sativa L.). Applied Ecology and Environmental Research 18(5), 7077-7088. doi: https://doi.org/10.15666/aeer/1805_70777088

Jchappell, J., Brown, T., Purcell, T., et al. (2008). A demonstration of tilapia and tomato culture utilizing an energy efficient integrated system approach. In From the pharaohs to the future. eighth international symposium on tilapia in aquaculture. proceedings. cairo, egypt, 12-14 october, 2008 (pp. 23–32).

Jiménez, B. (2006). Irrigation in developing countries using wastewater. International Review for Environmental Strategies 6(2), 229–250.

Kádár, I. (1992). A növénytáplálás alapelvei és módszerei. Budapest: MTA Talajtani és Agrokémiai Kutatóintézet (MTA ATK TAKI).

Kafi, M., & Rahimi, Z. (2011, apr). Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulaca oleracea L.). Soil Science and Plant Nutrition 57(2), 341–347. doi: https://doi.org/10.1080/00380768.2011.567398

Khater, E.-S. G., Bahnasawy, A. H., Shams, A. E.-H. S., Hassaan, M. S., & Hassan, Y. A. (2015). Utilization of effluent fish farms in tomato cultivation. Ecological Engineering 83(1), 199-207. doi: https://doi.org/10.1016/j.ecoleng.2015.06.010

Kiliç, C. C., Kukul, Y. S., & Anaç, D. (2008). Performance of purslane (Portulaca oleracea L.) as a salt-removing crop. Agricultural Water Management 95(7), 854-858. doi: https://doi.org/10.1016/j.agwat.2008.01.019

Kolozsvári, I., Kun, Á., Jancsó, M., Bakti, B., Bozán, C., & Gyuricza, C. (2021). Utilization of Fish Farm Effluent for Irrigation Short Rotation Willow (Salix alba L.) under Lysimeter Conditions. Forests 12(4), 457. doi: https://doi.org/10.3390/f12040457

Maia, S. S. S., da Silva, R. C. P., de A. de Oliveira, F., dos P. da Silva, O. M., da Silva, A. C., & dos S. Candido, W. (2017). Responses of basil cultivars to irrigation water salinity. Revista Brasileira de Engenharia Agrícola e Ambiental 21(1), 44-49. doi: https://doi.org/10.1590/1807-1929/agriambi.v21n1p44-49

Marofi, S., Shakarami, M., Rahimi, G., & Ershadfath, F. (2015). Effect of wastewater and compost on leaching nutrients of soil column under basil cultivation. Agricultural Water Management 158(1), 266-276. doi: https://doi.org/10.1016/j.agwat.2015.05.007

McMurtry, M. R., Sanders, D. C., Cure, J. D., Hodson, R. G., Haning, B. C., & Amand, E. C. S. (1997). Efficiency of Water Use of an Integrated Fish/Vegetable Co-Culture System. Journal of the World Aquaculture Society 28(4), 420-428. doi: https://doi.org/10.1111/j.1749-7345.1997.tb00290.x

MéM NAK. (1979). Műtrágyázási irányelvek és üzemi számítási módszer. MÉM Növényvédelmi és Agrokémiai Központ. Budapest (), 102.

Omeir, M. K., Jafari, A., Shirmardi, M., & Roosta, H. (2019). Effects of Irrigation with Fish Farm Effluent on Nutrient Content of Basil and Purslane. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 90(4), 825-831. doi: https://doi.org/10.1007/s40011-019-01155-0

Omer, E., Ahl, H. S.-A., & Gendy, A. E. (2014). Yield and Essential Oil of Ajwain (Trachyspermum ammi) Plant Cultivated in Saline Soil of North Sinai in Egypt. Journal of Essential Oil Bearing Plants 17(3), 469-477. doi: https://doi.org/10.1080/0972060x.2014.895178

Ozturk, A., Unlukara, A., Ipek, A., & Gurbuz, B. (2004). Effects of salt stress and water deficit on plant growth and essential oil content of lemon balm (Melissa officinalis L.). Pakistan Journal of Botany 36(4), 787-792.

Petropoulos, S. A., Karkanis, A., Fernandes, Â., Barros, L., Ferreira, I. C. F. R., Ntatsi, G., ... Khah, E. (2015). Chemical Composition and Yield of Six Genotypes of Common Purslane (Portulaca oleracea L.): An Alternative Source of Omega-3 Fatty Acids. Plant Foods for Human Nutrition 70(4), 420-426. doi: https://doi.org/10.1007/s11130-015-0511-8

Sabra, A., Daayf, F., & Renault, S. (2012). Differential physiological and biochemical re- sponses of three Echinacea species to salinity stress. Scientia Horticulturae 135(1), 23-31. doi: https://doi.org/10.1016/j.scienta.2011.11.024

Sajjadi, S. E. (2006). Analysis of the essential oils of two cultivated basil (Ocimum basilicum L.) from Iran. DARU Journal of Pharmaceutical Sciences 14(3), 128-130.

Silva, E. F. L., Botelho, H. A., Venceslau, A. d. F. A., Magalhaes, D. S., et al. (2018). Fish farming effluent application in the development and growth of maize and bean plants. Cientifica Jaboticabal 46(1), 74-81.

Tanaka, H., Yamada, S., Masunaga, T., Yamamoto, S., Tsuji, W., & Murillo-Amador, B. (2018). Comparison of nutrient uptake and antioxidative response among four Labiatae herb species under salt stress condition. Soil Science and Plant Nutrition 64(5), 589-597. doi: https://doi.org/10.1080/00380768.2018.1492334

Zhou, Y.-X., Xin, H.-L., Rahman, K., Wang, S.-J., Peng, C., & Zhang, H. (2015). Portulaca oleracea L.: A Review of Phytochemistry and Pharmacological Effects. BioMed Research Interna- tional 2015(1), 925631. doi: https://doi.org/10.1155/2015/925631

Downloads

Published

2022-12-30

How to Cite

Macro-, mesoelement and sodium content of plant parts of energy willows irrigated with effluent water of agricultural origin. (2022). COLUMELLA – Journal of Agricultural and Environmental Sciences, 9(2), 91-99. https://doi.org/10.18380/SZIE.COLUM.2022.9.2.91

Similar Articles

41-50 of 71

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)