Preliminary results on in vitro utilisation of antibacterial polymer paint
DOI:
https://doi.org/10.17205/aweth.5905Keywords:
polymer paint, animal health, Escherichia coli, housing technology, silver nitrateAbstract
Thanks to the polymer revolution of the 20th century, plastics have become part of everyday life. The type of plastics in which linear polymer chains are connected by cross-linking units is called polymer crosslinks. During our work, we aimed to develop antibacterial polymers that can help improve the health of animals and increase their useful life. The aim of study was to investigate the antibacterial effect of silver nitrate-containing polymer paint under in-vitro conditions on Escherichia coli bacterial cultures. Based on the results, one can conclude that have successfully produced an antibacterial surface treatment paint containing silver nitrate (AgNO3). Microbiological tests confirmed that the paint containing silver nitrate has a significant antibacterial effect on the E. coli bacteria. The increase in concentration did not increase the antibacterial efficiency, but the antimicrobial effect became more balanced.
References
Bentley R, Meganathan R. (1982): Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiological Reviews, 46, 3, 241–280, https://doi.org/10.1128/mr.46.3.241-280.1982
Bergonier, D., De Crémoux, R., Rupp, R., Lagriffoul, G., Berthelot, X. (2003): Mastitis of dairy small ruminants. Veterinary Research, 34, 689–716, https://doi.org/10.1051/vetres:2003030
Böő I. (2002): Gazdasági állataink védelmében. Szaktudás Kiadó Ház Rt., Budapest, 32 p.
Bozanic, D.K., Djokovic, V., Blanusa, J., Nair, P.S., Georges, M.K., Radhakrishnan, T. (2007): Preparation and properties of nano-sized Ag and Ag2S particles in biopolymer matrix. Europe-an Physical Journal E, 22, 51, https://doi.org/10.1140/epje/e2007-00008-y
Diez-Pascual, A.M. (2019): Antibacterial Nanocomposites Based on Thermosetting Polymers Derived from Vegetable Oils and Metal Oxide Nanoparticles. Polymers, 11, 11, 1790, https://doi.org/10.3390/polym11111790
Hermann Staudinger and the Foundation of Polymer Science (1999): International Historic Chemical Landmarks. Freiburg, Baden-Wurttemberg, April 19, American Chemical Society.
Hudault S, Guignot J, Servin AL (2001): Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection. Gut, 49(1), 47–55, https://doi.org/10.1136/gut.49.1.47
Garside, M. (2019): Global plastic production 1950-2018, https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ (utolsó letöltés: 2019. november 8)
Maciejewska, M.B., Wychowaniec, J.K., Woźniak-Budych, M., Popenda, L., Warowicka, A., Golba, K., Litowczenko, J., Fojud, Z., Wereszczyńska, B., Jurga, S (2019): UV cross-linked polyvinylpyrrolidone electrospun fibres as antibacterial surfaces. Science and Technology of Advanced Materials, 20(1), 979–991, https://doi.org/10.1080/14686996.2019.1667737
Illés G., Pajor F., Póti P. (2016): Szarvasmarha istállók új típusú polimer padozata. Animal Welfare, Etológia és Tartástechnológia, 11(1), 48–52, https://doi.org/10.17205/SZIE.AWETH.2015.1.48
Krumpfer, J.W., Schuster, T., Klapper, M., Müllen, K. (2013): Make it nano-Keep it nano. Nano Today, 8, 417–438, https://doi.org/10.1016/j.nantod.2013.07.006
Lu, Y., Spyra, P., Mei, Y., Ballauff, M., Pich, A. (2007): Composite hydrogels: robust carriers for catalytic nanoparticles. Macromolecular Chemistry and Physics, 208, 254, https://doi.org/10.1002/macp.200600534
Luo, C., Zhang, Y., Zeng, X., Zeng, Y., Wang, Y.J. (2005): The role of poly (ethylene glycol) in the formation of silver nanoparticles. Journal of Colloid and Interface Science, 288, 444, https://doi.org/10.1016/j.jcis.2005.03.005
Mezey P. (2009): Poli(N,N-dimetil-akrilamid)-l-poliizobutilén amfifil kotérhálók előállítása, szerke-zeti jellemzése és nanohibridjeik, PhD értekezés, ELTE TTK Kémia Doktori Iskola, Budapest.
Murgia, D., Angellotti, G., D'Agostino, F., De Caro, V. (2019): Bioadhesive Matrix Tablets Loaded with Lipophilic Nanoparticles as Vehicles for Drugs for Periodontitis Treatment: Development and Characterization. Polymers, 11(11), 1801, https://doi.org/10.3390/polym11111801
Odian, G. (1991): Principles of Polymerization. John Wiley & Sons, Inc., New York. Perrin, F., Tenenhaus-Aziza, F., Michel, V., Miszczycha, S., Bel, N., Sanaa, M. (2015): Quantitative risk assessment of haemolytic and uremic syndrome linked to O157:H7 and non-O157:H7 Shiga-toxin producing Escherichia coli strains in raw milk soft cheeses. Risk Analysis, 35, 109–128, https://doi.org/10.1111/risa.12267
Reid G, Howard J, Gan BS (2001): Can bacterial interference prevent infection? Trends in Microbiology, 9, 9, 424–428, https://doi.org/10.1016/S0966-842X(01)02132-1
Singh, N. Khanna, P.K. Mater. (2007): In situ synthesis of silver nano-particles in polymethylmethacrylate. Materials Chemistry and Physics, 104, 367–372. https://doi.org/10.1016/j.matchemphys.2007.03.026
US Patent (2010): Patently American blogspot, No. 942,699.
Tóth R.V. (2014): Poli(N-vinil-imidazol)-l-poli(tetrahidrofurán) kotérhálók tulajdonságai és palládi-ummal alkotott hibridjei, MSc szakdolgozat, ELTE TTK Kémiai Intézet, Szerves Kémiai Tanszék
Vogt, R.L., Dippold, L. (2005): Escherichia coli O157:H7 outbreak associated with consumption of ground beef. June-July 2002. Public Health Reports, 120 (2), 174–178, https://doi.org/10.1177/003335490512000
Wada, Y., Kobayashi, T., Yamasaki, H., Sakata, T., Hasegawa, N., Mori, H., Tsukahara, Y. (2007): Nanohybrid polymer prepared by successive polymerization of methacrylate monomer containing silver nanoparticles in situ prepared under microwave irradiation. Polymer, 48. 1441, https://doi.org/10.1016/j.polymer.2007.01.047
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Illés Gergely , Kovács-Weber Mária, Pajor Ferenc , Póti Péter
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.