First lactation performance of Holstein-Friesian cows derived from sexed insemination doses

Authors

  • József Péter Polgár Magyar Agrár- és Élettudományi Egyetem, Állattenyésztési Tudományok Intézet, Állatnemesítési Tanszék, 8360 Keszthely, Deák Ferenc u. 16.
  • Szabolcs Tamás Nagy Magyar Agrár- és Élettudományi Egyetem, Állattenyésztési Tudományok Intézet, Precíziós Állattenyésztési és Állattenyésztési Biotechnika Tanszék, 8360 Keszthely, Deák Ferenc u. 16.
  • Dorina Abella Magyar Agrár- és Élettudományi Egyetem, Állattenyésztési Tudományok Intézet, Állatnemesítési Tanszék, 8360 Keszthely, Deák Ferenc u. 16.
  • Gergely Faludi Magyar Agrár- és Élettudományi Egyetem, Állattenyésztési Tudományok Intézet, Állatnemesítési Tanszék, 8360 Keszthely, Deák Ferenc u. 16.
  • Szabolcs Bene Magyar Agrár- és Élettudományi Egyetem, Állattenyésztési Tudományok Intézet, Állatnemesítési Tanszék, 8360 Keszthely, Deák Ferenc u. 16.

DOI:

https://doi.org/10.17205/SZIE.AWETH.2022.2.145

Keywords:

sexed sperm, paternal effect, first lactation, milk production, Holstein Friesian

Abstract

Nowadays, the use of sexed sperm is a part of everyday practice in cattle breeding. Among other things, this technology is responsible for the large-scale genetic progress, which enables higher and higher quality production. The paternal effect is less studied in this area, as research primarily focuses on the maternal effects on embryonic development and the phenotype of the offspring. The study’s aim was to evaluate the paternal effect on the production parameters of offspring from sexed and conventional AI doses. For this purpose, several years of reproductive and milk production data of a dairy farm characterized by a high level of milk production were used, based on which the first lactation milk production of offspring derived from sexed and normal sperm of given bulls was compared. The data were obtained from the Riska management software. To build the database, data on the production, origin and first calving age of heifers calved between 2015 and 2019 were used. Based on our results, the type of sperm used from individual bulls affects the first lactation production. In the future, it is therefore recommended to carry out studies that reveal in more detail the effect of sexing procedure on the reproductive material of bulls.

Author Biography

  • József Péter Polgár, Magyar Agrár- és Élettudományi Egyetem, Állattenyésztési Tudományok Intézet, Állatnemesítési Tanszék, 8360 Keszthely, Deák Ferenc u. 16.

    corresponding author
    polgar.jozsef.peter@uni-mate.hu

References

Behboodi, E., Anderson, G. B., BonDurant, R. H., Cargill, S. L., Kreuscher, B. R., Medrano, J. F., Murray, J. D. (1995): Birth of large calves that developed from in vitro-derived bovine embryos. Theriogenology, 44. 2. 227–232. https://doi.org/10.1016/0093-691X(95)00172-5

Bermejo-Álvarez, P., Lonergan, P., Rath, D., Gutiérrez-Adan, A., Rizos, D. (2010): Developmental kinetics and gene expression in male and female bovine embryos produced in vitro with sex-sorted spermatozoa. Reproduction, Fertility and Development, 22. 2. 426. https://doi.org/10.1071/RD09142

Bonilla, L., Block, J., Denicol, A. C., Hansen, P. J. (2014): Consequences of transfer of an in vitro-produced embryo for the dam and resultant calf. Journal of Dairy Science, 97. 1. 229–239. https://doi.org/10.3168/jds.2013-6943

Burroughs, C. A., Graham, J. K., Lenz, R. W., Seidel, G. E. (2013): Seminal plasma effects on sex-sorting bovine sperm. Theriogenology, 79. 3. 551–557. https://doi.org/10.1016/j.theriogenology.2012.10.024

Carvalho, J. O., Michalczechen-Lacerda, V. A., Sartori, R., Rodrigues, F. C., Bravim, O., Franco, M. M., Dode, M. A. N. (2012): The methylation patterns of the IGF2 and IGF2R genes in bovine spermatozoa are not affected by flow-cytometric sex sorting. Molecular Reproduction and Development, 79. 2. 77–84. https://doi.org/10.1002/mrd.21410

Carvalho, J. O., Sartori, R., Machado, G. M., Mourão, G. B., Dode, M. A. N. (2010): Quality assessment of bovine cryopreserved sperm after sexing by flow cytometry and their use in in vitro embryo production. Theriogenology, 74. 9. 1521–1530. https://doi.org/10.1016/j.theriogenology.2010.06.030

Cerchiaro, I., Cassandro, M., Dal Zotto, R., Carnier, P., Gallo, L. (2007): A field study on fertility and purity of sex-sorted cattle sperm. Journal of Dairy Science, 90. 5. 2538–2542 https://doi.org/10.3168/jds.2006-694

DeJarnette, J. M., Nebel, R. L., Marshall, C. E. (2009): Evaluating the success of sex-sorted semen in US dairy herds from on farm records. Theriogenology, 71. 1. 49–58. https://doi.org/10.1016/j.theriogenology.2008.09.042

Diers, S., Heise, J., Krebs, T., Groenewold, J., Tetens, J. (2020): Effect of sexed semen on different production and functional traits in German Holsteins. Veterinary and Animal Science, 9. 100101. https://doi.org/10.1016/j.vas.2020.100101

Djedović, R., Bogdanović, V., Stanojević, D., Nemes, Z., Gáspárdy, A., Cseh, S. (2016): Involuntary reduction in vigour of calves born from sexed semen. Acta Veterinaria Hungarica, 64. 2. 229–238. https://doi.org/10.1556/004.2016.023

Djedović, R., Bogdanović, V., Stanojević, D., Samolovac, L., Brka, M. (2017): Phenotypic variability of fertility and milk traits in offspring obtained by insemination by sexed and conventional semen of holstein breed bulls | Journal of Agricultural, Food and Environmental Sciences, JAFES. Journal of Agricultural, Food and Environmental Sciences, 71. 1. 1–8.

Duranthon, V., Chavatte-Palmer, P. (2018): Long term effects of ART: What do animals tell us? Molecular Reproduction and Development, 85. 4. 348–368. https://doi.org/10.1002/mrd.22970

Farin, P. W., Piedrahita, J. A., Farin, C. E. (2006): Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology, 65. 1. 178–191. https://doi.org/10.1016/j.theriogenology.2005.09.022

Healy, A. A., House, J. K., Thomson, P. C. (2013): Artificial insemination field data on the use of sexed and conventional semen in nulliparous Holstein heifers. Journal of Dairy Science, 96. 3. 1905–1914. https://doi.org/10.3168/jds.2012-5465

Johnson, L. A., Welch, G. R. (1999): Sex preselection: High-speed flow cytometric sorting of X and Y sperm for maximum efficiency. Theriogenology, 52. 8. 1323–1341. https://doi.org/10.1016/S0093-691X(99)00220-4

Kurykin, J., Hallap, T., Jalakas, M., Padrik, P., Kaart, T., Johannisson, A., Jaakma (2016): Effect of insemination-related factors on pregnancy rate using sexed semen in Holstein heifers. Czech Journal of Animal Science, 61. 12. 568–577. https://doi.org/10.17221/12/2016-CJAS

Maicas, C., Hutchinson, I. A., Kenneally, J., Grant, J., Cromie, A. R., Lonergan, P., Butler, S. T. (2019): Fertility of fresh and frozen sex-sorted semen in dairy cows and heifers in seasonal-calving pasture-based herds. Journal of Dairy Science, 102. 11. 10530–10542. https://doi.org/10.3168/jds.2019-16740

Mikkola, M., Taponen, J. (2017): Quality and developmental rate of embryos produced with sex-sorted and conventional semen from superovulated dairy cattle. Theriogenology, 87. 135–140. https://doi.org/10.1016/j.theriogenology.2016.08.013

Morgan, H. L., Watkins, A. J. (2020): The influence of seminal plasma on offspring development and health. Seminars in Cell and Developmental Biology, 97. 131–137. https://doi.org/10.1016/j.semcdb.2019.06.008

Morton, K. M., Herrmann, D., Sieg, B., Struckmann, C., Maxwell, W. M. C., Rath, D., Evans, G., Lucas-Hahn, A., Niemann, H., Wrenzycki, C. (2007): Altered mRNA expression patterns in bovine blastocysts after fertilisation in vitro using flow-cytometrically sex-sorted sperm. Molecular Reproduction and Development, 74. 8. 931–940. https://doi.org/10.1002/mrd.20573

Norman, H. D., Hutchison, J. L., Miller, R. H. (2010): Use of sexed semen and its effect on conception rate, calf sex, dystocia, and stillbirth of Holsteins in the United States. Journal of Dairy Science, 93. 8. 3880–3890. https://doi.org/10.3168/jds.2009-2781

Rivera, R. M. (2019): Consequences of assisted reproductive techniques on the embryonic epigenome in cattle. Reproduction, Fertility and Development, 32. 2. 65–81. https://doi.org/10.1071/RD19276

Smith, S. L., Everts, R. E., Sung, L. Y., Du, F., Page, R. L., Henderson, B., Rodriguez-Zas, S. L., Nedambale, T. L., Renard, J. P., Lewin, H. A., Yang, X., Tian, X. C. (2009): Gene expression profiling of single bovine embryos uncovers significant effectsof in vitro maturation, fertilization and culture. Molecular Reproduction and Development, 76. 1. 38–47. https://doi.org/10.1002/mrd.20927

Steinhauser, C. B., Graham, J. K., Lenz, R. W., Seidel, G. E. (2016): Removing seminal plasma improves bovine sperm sex-sorting. Andrology, 4. 6. 1131–1137. https://doi.org/10.1111/andr.12245

Tubman, L. M., Brink, Z., Suh, T. K., Seidel, G. E. (2004): Characteristics of calves produced with sperm sexed by flow cytometry/cell sorting. Journal of Animal Science, 82. 4. 1029–1036. https://doi.org/10.2527/2004.8241029x

Urrego, R., Rodriguez-Osorio, N., Niemann, H. (2014): Epigenetic disorders and altered gene expression after use of Assisted Reproductive Technologies in domestic cattle. Epigenetics, 9. 6. 803–815. https://doi.org/10.4161/epi.28711

Vincent, P., Underwood, S. L., Dolbec, C., Bouchard, N., Kroetsch, T., Blondin, P. (2012): Bovine semen quality control in artificial insemination centers. Bovine Reproduction, 685–695. https://doi.org/10.1002/9781118833971.ch74

de Vries, A., Overton, M., Fetrow, J., Leslie, K., Eicker, S., Rogers, G. (2008): Exploring the impact of sexed semen on the structure of the dairy industry. Journal of Dairy Science, 91. 2. 847–856. https://doi.org/10.3168/jds.2007-0536

van Wagtendonk, de Leeuw, A. M., Mullaart, E., de Roos, A. P. W., Merton, J. S., den Daas, J. H. G., Kemp, B., de Ruigh, L. (2000): Effects of different reproduction techniques: AI, moet or IVP, on health and welfare of bovine offspring. Theriogenology, 53. 2. 575–597. https://doi.org/10.1016/S0093-691X(99)00259-9

Watkins, A. J., Dias, I., Tsuro, H., Allen, D., Emes, R. D., Moreton, J., Wilson, R., Ingram, R. J. M., Sinclair, K. D. (2018): Paternal diet programs offspring health through sperm-and seminal plasma-specific pathways in mice. Proceedings of the National Academy of Sciences of the United States of America, 115. 40. 10064–10069. https://doi.org/10.1073/pnas.1806333115

Wilson, J. M., Williams, J. D., Bondioli, K. R., Looney, C. R., Westhusin, M. E., McCalla, D. F. (1995): Comparison of birth weight and growth characteristics of bovine calves produced by nuclear transfer (cloning), embryo transfer and natural mating. Animal Reproduction Science, 38. (1-2). 73–83. https://doi.org/10.1016/0378-4320(94)01353-N

Wu, C., Sirard, M. A. (2020): Parental Effects on Epigenetic Programming in Gametes and Embryos of Dairy Cows. Frontiers in Genetics, 11. 557846. https://doi.org/10.3389/fgene.2020.557846

Published

2022-12-30

Issue

Section

Articels

How to Cite

Polgár, J. P., Nagy, S. T., Abella, D., Faludi, G., & Bene, S. (2022). First lactation performance of Holstein-Friesian cows derived from sexed insemination doses. Animal Welfare, Ethology and Housing Systems (AWETH), 18(2), 145-156. https://doi.org/10.17205/SZIE.AWETH.2022.2.145

Most read articles by the same author(s)