Élelmiszerek D-aminosav tartalma
Irodalmi áttekintés
Kulcsszavak:
D-amino acids, free D-amino acids, racemization, heat treatment of proteins, alkaline treatment, bacterial activityAbsztrakt
Az élelmiszer fehérjékben előforduló D-aminosavak a technológiai beavatkozás következtében jönnek létre, miközben előkészítik az alapanyagokat fogyasztásra. A D-aminosavak legfontosabb forrásai az élelmiszerek, ugyanis az élelmiszer fehérjék a főzés vagy a különböző élelmiszeripari feldolgozási folyamatok során kisebb-nagyobb mértékű racemizáción esnek át. Az élelmiszer áruházak növekvő mennyiségben tartalmaznak olyan élelmiszereket (reggelihez használt cereáliák, sült krumpli, folyékony és por alakú gyermektápszerek, húshelyettesítők és egyéb kiegészítő szerek) melyek egy része jelentős mennyiségű D-aminosavat tartalmaz, és ezek a D-aminosavak káros emésztési és egészségügyi sajátságokkal bírnak. A lúgos kezelés katalizálja az optikailag aktív aminosavak racemizációját. A racemizáció aránya eltérő ugyan a különböző fehérjéknél, de a fehérjéken belül az egyes aminosavak relatív sorrendje igen hasonló. Elsősorban a közeg pH-ja, a hőkezelés, az alkalikus behatás ideje és az egyes aminosavak szerkezete befolyásolja leginkább a racemizációt. Az alkáliával vagy a hővel történő kezelés során kapott D-aminosavak rontják a minőséget és a kezelt élelmiszer biztonságos felhasználhatóságát. A D-aminosavak jelenléte a fehérjében csökkenti az emészthetőséget és a többi aminosav hozzáférhetőségét. Ez az esszenciális aminosavak L-enantiomerjei mennyiségének csökkenését eredményezheti, mivel a peptid kötések a normális úton nem tudnak szétszakadni. Néhány D-aminosav izomer toxikus hatással is rendelkezhet és módosíthatják a lizinoalanin biológiai hatását is. A másik részről viszont bizonyos D- aminosavak hasznosak is lehetnek (fájdalomcsillapítás), és a csökkent emészthetőségű D-aminosavakat tartalmazó fehérjéket fel lehet használni, pl. fogyókúráknál.Hivatkozások
Bada, J. L. (1984). In vivo racemization in mammalian proteins. Methods Enzimol., 106. 98–115. https://doi.org/10.1016/0076-6879(84)06011-0
Bada, J. L. (1985). Racemization of amino acids. In Chemistry and Biochemistry of Amino Acids, ed. G.C. Barrett, 399–411. London-New York, Chapman & Hall. https://doi.org/10.1007/978-94-009-4832-7_13
Bada, J. L., Cronin, J. R., Ho, M. S., Kvenvolden, K. A. and Lawless, J. G. (1983). On the reported optical activity of amino acids in the Murchison meteorite. Nature, 310. 494–497. https://doi.org/10.1038/301494a0
Bada, J. L., Miller, S. L. (1987). Racemization and the origin of optical active organic compounds in living organisms. In: H. Man and J.L. Bada (1987): Dietary D-amino acids.Ann. Rev. Nutr., 7. 209–225. https://doi.org/10.1146/annurev.nu.07.070187.001233
Bender, D. A. (1985). Amino Acid Metabolism, Chichester/New York, Wiley 2nd ed.
Bender, A. E., Krebs, H. A. (1950). The oxidation of various synthetic a-amino acids by mammalian D-amino acid oxidase, L-amino acid oxidase of cobra venom and the L- and D amino acid oxidases of Neuospora crassa. Biochem. J., 46. 210–219. https://doi.org/10.1042/bj0460210
Berg, C. P. (1959). Utilization of D-amino acids. In Protein and amino acid nutrition. ed. A.A. Albanese, 57–96. New York, Academic. https://doi.org/10.1016/B978-0-12-395683-5.50008-0
Bodansky, M., Perlman, D. (1969). Antibiotic peptides. Science, 163. 352–358. https://doi.org/10.1126/science.163.3865.352
Boehm, M. F., Bada, J. L. (1984a). Racemization of aspartic acid and phenylalanine in the sweetener aspartame at 100 °C. Proc. Natl. Acad. Sci., USA, 81. 5263–5266. https://doi.org/10.1073/pnas.81.16.5263
Boehm, M. F., Bada, J. L. (1984b). Investigations of in vivo methionine racemization in mammalian tissues. Biochem. Int., 8. 603–608.
Brückner, H., Hausch, M. (1990). D-amino acids in dairy products: Detection, origin and nutritional aspects. I. Milk, fermented milk, fresh cheese and acid curd cheese. Milchwissenschaft, 45. 357–360.
Budd, K. (1983). Use of D-phenylalanine, and enkephalinase inhibitor, in the treatment of intractable pain. In Adv. Pain Res. Ther., 5. 305–308.
Bunjapamai, S., Mahoney, R. R., Fagerson, I. S. (1982). Determination of D-amino acids in some processed foods and effect of racemization on in vitro digestibility of casein. J. Food Sci., 47. 1229–1234. https://doi.org/10.1111/j.1365-2621.1982.tb07654.x
Burton, K. (1955). D-amino acid oxidase from kidney. Methods Enzymol., 2. 199–204. Chakravarty, P.K., Carl, P.L., Weber, M.J., Katzenelknbogen, J.A. (1983). Plasmin-activated prodrugs for cancer chemotheraphy. 2. Synthesis and biological activity of peptidyl derivatives of dexorubicin. J. Med. Chem., 26. 638–644.
Cheng, R. S. S., Pomeranz, B. (1979). Correlation of genetic difference in endorphin systems with analgesic effects of D-amino acid in mice. Brain Res., 177. 583–587. https://doi.org/10.1016/0006-8993(79)90477-3
Cherkin, A., Davis, J. L., Garman, M. W. (1978). D-prolin stereospecifity and sodium chloride dependence of lethal convulsant activity in the chick. Pharmacol. Biochem. Behav., 8. 623–625. https://doi.org/10.1016/0091-3057(78)90399-4
Chung, S. Y., Swaisgood, H. E., Catignani, G. L. (1986). Effect of alkali treatment in the presence of fructose on digestibility of food proteins as determined by an immobilized digestive enzyme assay (IDEA). J. Agric. Food Chem., 34. 579–584. https://doi.org/10.1021/jf00069a051
Clarke, S. (1985). The role of Asp and Asn residues in the aging of erythrocyte proteins: Cellular metabolism of racemized and isomerized forms by methylation reactions. In Cellular and Molecular Aspects of Aging: The Red Cells as a Model. Ed. J.W. Eaton, D. K. Konzen, J. G. White, 91–103. New York, Liss.
Corrigan, J. J. (1969). D-amino acids in animals. Science, 164. 142–149. https://doi.org/10.1126/science.164.3876.142
Csapó, J., Henics, Z. (1991). Quantitative determination of bacterial protein from the diaminopimelic acid and D-alanine content of rumen liquor and intestines. Acta Agr. Hung., 40. 159–173.
Csapó, J., Martin, T. G., Csapó-Kiss, Zs., Stefler, J., Némethy, S. (1995). Influence of udder inflammation on the D-amino acid content of milk. Journal of Dairy Science, 78. 2375–2381. https://doi.org/10.3168/jds.S0022-0302(95)76865-5
Csapó, J., Csapó-Kiss, Zs., Csordás, E., Fox, P. F., Wágner, L., Tálos, T. (1997). Különböző technológiával készült sajtok összes szabad- és szabad D-aminosav tartalma. Tejipar. 1997. 57. 1. 25–30.
Dakin, H. D. (1908). Note on the relative rate of absorption of optically isomeric substances from the intestine. J. Biol. Chem., 4. 437–439. https://doi.org/10.1016/S0021-9258(17)36365-2
Dakin, H. D., Dudley, H. W. (1913). The action of enzymes on racemized proteins and their fate in the animal body. J. Biol. Chem., 15. 271–277. https://doi.org/10.1016/S0021-9258(18)88526-X
D’Aniello, A., Guiditta, A. (1978). Presence of D-aspartate in squid axoplasm and in other regions of the cephalopod nervous system. J. Neurochem., 31. 1107–1108. https://doi.org/10.1111/j.1471-4159.1978.tb00155.x
DeGroot, A. P., Slump, P., Feron, V. J., VanBeek, L. (1976). Effects of alkali treated proteins: feeding studies with free and protein-bound lysinoalanine in rats and other animals. J. Nutr., 106. 1527–1538.
Dixon, M., Kenworthy, P. (1967). D-aspartate oxidase of kidney. Biochem. Biophys. Acta, 146. 54–76. https://doi.org/10.1016/0005-2744(67)90073-3
Engel, M. H., Hare, P. E. (1982). Racemization rates of the basic amino acids. Carnegie Inst. Washington Yearb., 81. 422–425.
Felbeck, H. (1985). Occurrence and metabolism of D-aspartate in the gutless bivalve Solemya reidi. J. Exp. Zool., 234. 145–149. https://doi.org/10.1002/jez.1402340116
Felbeck, H., Wiley, S. (1987). Free D-amino acids in the tissues of marine bivalves. Biol. Bull., 173. 252–259. https://doi.org/10.2307/1541877
Finch, L. R., Hird, F. J. R. (1960). The uptake of amino acids by isolated segments of rat intestine. II. A survey of affinity for uptake from rates of uptake and competition for uptake. Biochim. Biophys. Acta, 43. 278–287. https://doi.org/10.1016/0006-3002(60)90438-8
Finley, J. W. (1985). Environmental effects of protein quality. In Chemical Changes in Food During Processing. (Inst. Food Technologists Basic Symp. Ser.), Ed. T. Richardson, J.W. Finley, 443–482. Westport, Conn. AVI Publ. https://doi.org/10.1007/978-1-4613-2265-8_19
Finley, J. W., Schwass, D. E., Eds. (1983). Xenobiotics in Foods and Feeds. ACS Symp. Ser. No. 234. Washington, DC. Ann. Chem. Soc., 421. https://doi.org/10.1021/bk-1983-0234
Fisher, G. H., Garcia, N. M., Payan, I. L., Cadilla-Perezrios, R., Sheramata, W. A., Man, E. H. (1986). D-aspartic acid in purified myelin and myelin basic protein. Biochem. Biophys. Res. Commun., 135. 683–687. https://doi.org/10.1016/0006-291X(86)90047-1
Friedman, M. (1977). Crosslinking amino acids – Stereochemistry and nomenclature. Adv. Exp. Med. Biol., 86B. 1–27. https://doi.org/10.1007/978-1-4757-9113-6_1
Friedman, M., Gumbman, M. R. (1984). The utilization and safety of isomeric sulfur-containing amino acids in mice. J. Nutr., 114. 2301–2310. https://doi.org/10.1093/jn/114.12.2301
Friedman, M., Liardon, R. (1985). Racemization kinetics of amino acid residues in alkali-treated soybean proteins. J. Agric. Food Chem., 33. 666–672. https://doi.org/10.1021/jf00064a025
Friedman, M., Zahnley, J. C., Masters, P. M. (1981). Relationship between in vitro digestibility of casein and its content of lysinoalanine and D-amino acids. J. Food Sci., 46. 127–134. https://doi.org/10.1111/j.1365-2621.1981.tb14545.x
Friedman, M., Grosjean, D. K., Zahnley, J. C. (1985). Carboxipeptidase inhibition by alkali-treated food proteis. J. Agric. Food Chem., 33. 208–213. https://doi.org/10.1021/jf00062a012
Fuse, M., Hayase, F., Kato, H. (1984). Digestibility of proteins and racemization of amino acid residues in roasted foods. J. Jpn. Soc. Nutr. Food Sci., 37. 348–354.
Gandolfi, I., Palla, G., Delprato, L., DeNisco, F., Marchelli, R., Salvadori, C. (1992). D-amino acids in milk as related to heat treatments and bacterial activity. J. Food Sci., 57. 377–379. https://doi.org/10.1111/j.1365-2621.1992.tb05498.x
Gibson, Q. H., Wiseman, G. (1951). Selective absorption of stereoisomers of amino acids from loops of the small intestine of the rat. Biochem. J., 48. 426–429. https://doi.org/10.1042/bj0480426
Gray, G. M., Cooper, H. L. (1971). Protein digestion and absoprtion. Gastroenterelogy, 61. 535–544. https://doi.org/10.1016/S0016-5085(19)33506-1
Gullino, P., Winitz, M., Birnbaum, S. M., Cornfield, J., Otey, M. C., Greenstein, J. P. (1956). Studies on the metabolism of amino acids and related compounds in vivo. I. Toxicity of essential amino acids, individually and in mixtures, and the protective effect of L-arginine. Arch. Biochem. Biophys., 64. 319–332. https://doi.org/10.1016/0003-9861(56)90276-4
Gund, P., Veber, P. (1979). On the base-catalysed epimerization of N-methylated peptides and diketopiperazines. J. Am. Chem. Soc., 101. 1885–1887. https://doi.org/10.1021/ja00501a046
Hayase, F., Kato, H., Fujimaki, M. (1973). Racemization of amino acid residues in protein during roasting. Agric. Biol. Chem., 37. 191–192. https://doi.org/10.1271/bbb1961.37.191
Hayase, F., Kato, H., Fujimaki, M. (1975). Racemization of amino acid residues in proteins and poly(L-amino)acids during roasting. J. Agric. Food. Chem., 23. 491–494. https://doi.org/10.1021/jf60199a055
Hayashi, R., Kameda, I. (1980a). Racemization of amino acid residues during alkali treatment of proteins and its adverse effect on pepsin digestibility. Agric. Biol. Chem., 44. 891–895. https://doi.org/10.1080/00021369.1980.10864038
Hayashi, R., Kameda, I. (1980b). Decreased proteolysis of alkali treated proteins: consequences of racemization in food processing. J. Food Sci., 45. 1430–1431. https://doi.org/10.1111/j.1365-2621.1980.tb06572.x
Hayashi, R. (1982). Lysinoalanine as a metal chelator: an implication for toxicity. J. Biol. Chem., 257. 13896–13898. https://doi.org/10.1016/S0021-9258(19)45314-3
Jenkins, W. L., Tovar, L. R., Schwass, D. E., Liardon, R., Carpenter, K. L. (1984). Nutritional characteristics of alkali-treated zein. J. Agric. Food Chem., 32. 1035–1041. https://doi.org/10.1021/jf00125a023
Kies, C., Fox, H., Aprahamian, S. (1975). Comparative values of L, DL and D-methionine supplementation of an oat-based diet for humans. J. Nutr., 105. 809–814. https://doi.org/10.1093/jn/105.7.809
Krebs, H. A. (1935). Metabolism of amino acids. III. Deamination of amino acids. Biochem. J., 29. 1620–1644. https://doi.org/10.1042/bj0291620
Krebs, H. A. (1948). The D- and L-amino acid oxidases. Biochem. Soc. Symp., 1. 2–19.
Liardon, R., Hurrel, R. F. (1983). Amino acid racemization in heated and alkali-treated proteins. J. Agric. Food. Chem., 31. 432–437. https://doi.org/10.1021/jf00116a062
Liardon, R., Lederman, S. (1986). Racemization kinetics of free and protein-bound amino acids under moderate alkaline treatment. J. Agric. Food. Chem., 34. 557–565. https://doi.org/10.1021/jf00069a047
Lubec, G., Wolf, C. H. R., Bartosch, B. (1990). Amino acid isomerisation and microwave exposure. The Lancet. March 31. 792.
Maga, J. A. (1984). Lysinoalanine in foods. J.Agric. Food. Chem., 32. 955–964. https://doi.org/10.1021/jf00125a001
Man, E. H., Fisher, G. H., Payan, I. L., Cadilla-Perezrios, R., Garcia, N. M. (1987). D-aspartate in human brains. J. Neurochem., 48. 510–515. https://doi.org/10.1111/j.1471-4159.1987.tb04122.x
Man, H., Bada, J. L. (1987). Dietary D-amino acids. Ann. Rev. Nutr., 7. 209–225. https://doi.org/10.1146/annurev.nu.07.070187.001233
Masters, P. E., Friedman, M. (1980). Amino acid racemization in alkali treated food proteins – chemistry, toxocology, and nutritional consequences. In Chemical Deterioration of Proteins ACS Symp. Ser., 123. 165–194., Ed. J. R. Whitaker and M. Fujimaki. Washington, DC. Am. Chem. Soc., 268. https://doi.org/10.1021/bk-1980-0123.ch008
Matsushima, O., Katayama, H., Yamada, K., Kado,Y. (1984). Occurrence of free D-alanine and alanine racemase activity in bivalve molluscs with special reference to intracellular osmoregulation. Mar. Biol. Lett., 5. 217–225.
Murray, E. D., Clarke, S. (1984). Synthetic peptide substrates for erythrocyte protein carboxyl methyltransferase. J. Biol. Chem., 259. 10722–10732. https://doi.org/10.1016/S0021-9258(18)90571-5
Neuberger, A. (1948). The metabolism of D-amino acids in mammals. Biochem. Soc. Symp., 1. 20–32.
Palla, G., Marchelli, R., Dossena, A., Casnati, G. (1989). Occurrence of D-amino acids in food. Detection by capillary gas chromatography and by reversed-phase high-performance liquid chromatography with L-phenylalaninamides as chiral selectors. J. Chromatography, 475. 45–53. https://doi.org/10.1016/S0021-9673(00)91414-6
Paquet, A., Thresher, W. C., Swaisgood, H. E., Catignani, G. L. (1985). Syntheses and digestibility determination of some epimeric tripeptides occurring in dietary proteins. Nutr. Res., 5. 891–901. https://doi.org/10.1016/S0271-5317(85)80176-7
Pasteur, L. (1852). Untersuchungen über Asparaginsäure und Aepfelsäure. Ann. Chem., 82. 324–335. https://doi.org/10.1002/jlac.18520820306
Payan, I. L., Cadilla-Perezrios, R., Fisher, G. H., Man, E. H. (1985). Analysis of problems encountered in the determination of amino acid enantiomeric ratios by gas chromatography. Anal. Biochem., 149. 484–491. https://doi.org/10.1016/0003-2697(85)90603-7
Peters, T. J. (1970). Intestinal peptides. Gut. 11. 720–725. https://doi.org/10.1136/gut.11.8.720
Preston, R. L. (1987). Occurrence of D-amino acids in higher organisms: A survey of the distribution of D-amino acids in marine invertebrates. Comp. Biochem. Physiol., 87B. 55–62. https://doi.org/10.1016/0305-0491(87)90470-6
Reaveley, D. A., Burge, R. E. (1972). Walls and membranes in bacteria. Adv. Microb. Physiol., 7. 1–81. https://doi.org/10.1016/S0065-2911(08)60076-4
Robinson, T. (1976). D-amino acids in higher plants. Life Sci., 19. 1097–1102. https://doi.org/10.1016/0024-3205(76)90244-7
Rosen-Levin, E. M., Smithson, K. W., Gray, G. M. (1980). Complementary role of surface hydrolysis and intact transport in the intestinal assimilation of di- and tripeptides. Biochim. Biophys. Acta, 629. 126–134. https://doi.org/10.1016/0304-4165(80)90271-8
Schwass, D. E., Tovar, L. R., Finely, J. W. (1983). Absorption of altered amino acids from the intestine. Eds. J. W. Finley and D. E. Schwass. Xenobiotics in Foods and Feeds. ACS Symp. Ser. No. 234. Washington, DC: Am. Chem. Soc., 187–201. https://doi.org/10.1021/bk-1983-0234.ch011
Shoji, J. I. (1978). Recent chemical studies on peptide antibiotics from the genus Bacillus. Adv. Appl. Microbiol., 24. 187–214. https://doi.org/10.1016/S0065-2164(08)70640-3
Stegnick, L. D., Bell, E. F., Filer, L. J., Ziegler, E. E., Anderson, D. W. (1986). Effect of equimolar doses of L-methionine, D-methionine and L-methionine-dl-sulfoxide on plasma and urinary amino acid levels in normal adult humans. J. Nutr., 116. 1185–1192. https://doi.org/10.1093/jn/116.7.1185
Steinberg, S., Bada, J. L. (1981). Diketopiperazine formation during investigations of amino acid racemization in dipeptides. Science, 213. 544–545. https://doi.org/10.1126/science.213.4507.544
Steinberg, S., Bada, J. L. (1983). Peptide decomposition in the neutral pH range via the formation of diketopiperazines. J. Org. Chem., 48. 2295–2298. https://doi.org/10.1021/jo00161a036
Steinberg, S., Masters, P. M., Bada, J. L. (1984). The racemization of free and peptide-bound serine and aspartic acid at 100 °C as a function of pH: implications for in vivo racemization. Bioorg. Chem., 12. 349–355. https://doi.org/10.1016/0045-2068(84)90016-6
Yamane, T., Miller, D. L., Hopfield, J. J. (1981). Discrimination between D- and L-tyrosyl transfer ribonucleic acid in peptide chain elongation. Biochemistry, 20. 7059–7063. https://doi.org/10.1021/bi00528a001
Letöltések
Megjelent
Folyóirat szám
Rovat
License
Copyright (c) 1997 Csapó János, Csapóné Kiss Zsuzsanna, Vargáné Visi Éva, Andrássyné Baka Gabriella, Terlakyné Balla Éva

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
