Acceleration of mercury excretion in broilers
Keywords:
mercury, anion exchange resin, protective effect, broilerAbstract
VARION AD (NIKE, Balatonfűzfő) anion exchange resin in the form of EDTA or Cl was used as a protective agent against mercury (II) ions. Where the anion exchanger pretreated with EDTA was fed together with the contaminated feed the VARION AD (EDTA) bound the great majority of these heavy metal ions in the digestive tract, thus inhibiting their absorption. With regard to selectivity, it is advantageous that the alkali metals do not form EDTA complexes; at the same time, the chelates created by the alkaline earth metals with EDTA are substantially less stable than those formed by mercury. In both cases this protective effect was examined in four-week-old Ross 308 type broiler cocks. The mercury was administered to the birds in a single dose, in the form of HgCl2 labelled with Hg-203 isotope; the feed supplemented with the protective agent was fed ad libitum. In the subsequent feeding period the mass and radioactivity concentration of the excreta were measured once daily. On the 10th day the birds were slaughtered, after which radioactivity concentration in the breast muscle, the liver and the kidney was measured. On the basis of the results obtained it was established that even at concentrations as low as 20 g per kg both protective agents increased mercury excretion significantly and reduced the quantity of mercury accumulating in the various organs (P < 0.05).
References
Aschner, M., Aschner, J. L. (1990). Mercury neurotoxicity: Mechanisms of blood-brain barrier transport. Neurosci Biobehav Rev., 14. 169–176. https://doi.org/10.1016/S0149-7634(05)80217-9
Barregard, L., Sallsten, G., Jarvhol, B. (1990). Mortality and cancer incidence in chloralkali workers exposed to inorganic mercury. Br. J. Ind. Med., England, 47. 99–104. https://doi.org/10.1136/oem.47.2.99
Berlin, M. (1979). Mercury. In. Handbook on the toxicology of metals. Ed. Friberg, L., Nordberg, L.F., Vouk, V.B., Elsevier/North-Holland Biomedical Press, Amsterdam, 503–530.
Bienvenue, E., Boudou, A., Desmazes, J. P., Gavach, C., Georgescauld, D., Sandeaux, J. (1984). Transport of mercury compounds across biomolecular lipid membranes: Effect of lipid composition, pH and chloride concentration. Chem. Biol. Interact., 48. 91–101. https://doi.org/10.1016/0009-2797(84)90009-7
Coates, G. E., Wade, K. (1967). Organometallic compounds. Methuen, London, 1. 121–176. https://doi.org/10.1007/978-94-010-9681-2_4
Curtis, D., Klassen, D. (1996). Casarett and Doull’s Toxicology. The basic sciences of poissons. McGraw-Hill Companies, Inc. Health Professions Divisions, New York, 395-396., 707-712., 885-886.
Czuba, M., Komsta-Szumska, E., Mortimer, D.C., Reuhl, K.R. (1982). The effects of plant-incorporated methylmercury on its distribution, excretion and demethylation in the rat. Toxicol Letters, 15–220. https://doi.org/10.1016/0378-4274(82)90004-2
Csathó, P. (1994). Nehézfém- és egyéb toxikuselem-forgalom talaj-növény rendszerben. Agrokémia és Talajtan, 43. 371–397.
Greenwood, N. N., Earnshaw, A. (1986). Chemistry of the elements. Pergamon Press, Oxford-NewYork-Toronto, 1395–1420.
Gyrd-Hansen, N. (1981). Toxicokinetics and methylmercury in pigs. Arch. Toxicol., 48. 173–181. https://doi.org/10.1007/BF00310486
Harada, M. (1980). Methyl mercury poisoning due to environmental contamination /minamata disease/. In: Toxicity of heavy metals in the environment. Ed. Oehme, F. W., Part, I., Marcel Dekker, Inc., New York, 261–302.
Hursh, J. B., Clarkson, T. W., Miles, E. F., Goldsmith, L. A. (1989). Percutaneous absorption of mercury vapor by man. Arch. Environ. Health, 44. 120–127. https://doi.org/10.1080/00039896.1989.9934385
Ilback, N. G., Sunberg, J., Oskarsson, A. (1991). Methylmercury exposure via placenta and milk impairs natural killer (NK) cell function in newborn rats. Toxicology Letters, 58. 149–158. https://doi.org/10.1016/0378-4274(91)90169-7
Inczédy, J. (1962) Ioncserélők analitikai alkalmazása. Műszaki Könyvkiadó, Budapest, 180–182.
Kádár, I. (1995). A talaj-növény-ember tápláléklánc szennyeződése kémiai elemekkel Magyarországon. Környezetvédelmi és területfejlesztési Minisztérium MTA Talajtani és Agrokémiai Kutató Intézete, Budapest, 58. 71.
Kambamanoli-Dimou, A., Kamarianos, A., Kilikidis, S. (1991). Transfer of methylmercury to hens’ eggs after oral administration. Bull. Environ. Contam. Toxicology, 46. 128–133. https://doi.org/10.1007/BF01688265
Kostyinak, P. J., Soiefer, A. I. (1984). A methylmercury toxicity model to test for possible adverse effects resulting from chelating agent therapy. J. Appl. Toxicol., 4. 206–210. https://doi.org/10.1002/jat.2550040409
Lisk, D. J. (1972). Trace metals in soils, plants and animals. Adv. Agron., 24. 267–325. https://doi.org/10.1016/S0065-2113(08)60637-9
Loi, P. (1987). Minamata: extraordinary contamination of fish with mercury. Summa. 4. 117–119.
Mohamed, M. K., Burbachr, T. M., Mottet, N. K. (1987). Effects of methylmercury on testicular functions in macaca fascicularis monkeys. Pharmacol. Toxicol., 60. 29–36. https://doi.org/10.1111/j.1600-0773.1987.tb01715.x
National Academy of Sciences (1980). Mineral tolerance of domestic animals. National Academy Press, Wasington, D.C. 304–327.
Nordenhall, K., Dock, L., Vahter, M. Ü. (1995). Transplacental and lactanional exposure to mercury in hamster pups after maternal administration of methyl mercury in late gestation. Pharmacol. Toxicol., 77. 130-135. https://doi.org/10.1111/j.1600-0773.1995.tb01001.x
Norseth, T., Clarkson, T. W. (1971). Intestinal transport of 203Hg-labelled methyl mercury chloridde. Arch. Environ. Health, 22. 568–575. https://doi.org/10.1080/00039896.1971.10665903
Pais, I. (1980). A mikrotápanyagok szerepe a mezőgazdaságban. Mezőgazdasági Kiadó, Budapest, 106–107.
Pal’usková, O., Ursinyová, M., Uhnák, J. (1991). Mercury level the components of the environments and diets. The Science of the Total Environment, 101. 79–82. https://doi.org/10.1016/0048-9697(91)90104-M
Rader, W. A., Spaulding, J. E. (1979). Regulatory aspects of trace elements in the environment. Toxicity of heavy metals in the environment. Ed. Oehme, F. W., Part 2., Marcel Dekker, Inc., New York, 669–688.
Rétfalvi, T., Sarudi, I., Lassu-Merényi, Zs. (1997). The effect of protective agents againts toxic heavy metals in microelement status in rats. Workshop on Environmental Biochemistry of Heavy Metals. Ed. Szilágyi, M., György Bessenyi College, Nyíregyháza, 105–108.
Rowland, I. R., Robinson, R. D., Doherty, R. A. (1984). Effect of diet on mercury metabolism and excretion in mice given methylmercury: role of gut flora. Arch. Environ. Health, 39. 401–408. https://doi.org/10.1080/00039896.1984.10545872
Rudd, J. W. M. (1995). Sources of methyl mercury to freshwater: A Review. Water, Air, and Soil Pollution, 80. 697–713. https://doi.org/10.1007/BF01189722
Salveterra, P., Massaro, E. J., Morganti, J. B., Lown, B. A. (1975). Time dependent tissue/organ uptake and distribution of Hg-203 in mice exposed to multiple sublethal doses of methyl mercury. Toxicol. Appl. Pharmacol., 32. 432–442. https://doi.org/10.1016/0041-008X(75)90233-1
SAS (1985). SAS user’s guide: Statistics (Version 5 Ed.). SAS Inst. Inc. Cary, NC.
Schurz, F., Fink-Gremmels, J. (1998). Mercury-induced mutagenity and the influence of metal binding proteins. In: Mengen- und Spurenelemente, 18. Arbeitstagung. Ed. Anke, M., Fridrich-Schiller-Universität, Jena, 96–101.
Siegel, B. Z., Lasconia, M., Yaeger, E., Siegel, S. M. (1984). The phytotoxicity of mercury vapor. Water, Air, and Soil Pollution, 23. 15–24. https://doi.org/10.1007/BF00185127
Steffan, N. R., Korthals, E. T., Winfrei, M. R. (1988). Effect of acidification on mercury methylation, demethylation and volatilization in sediments from an acid-susceptible lake. Appl.Environ. Microbiology, 54. 2003–2009. https://doi.org/10.1128/aem.54.8.2003-2009.1988
Szabó, S. A., Régius-Möcsényi, É., Győri, D. (1994). Mikroelemek a mezőgazdaságban III. Toxikus mikroelemek. Akadémiai Kiadó és Nyomda, Budapest, 22–38.
Takács, S. (1992). Környezet, ember, mikroelemek. Triorg Kft. Budapest, 96–101.
Thompson, L. J., Hall, J. O., Meerdink, G. L. (1991). Toxic effects of the trace element excess. Food Animal Practice, 7. 277–306. https://doi.org/10.1016/S0749-0720(15)30818-5
Trevors, J. T. (1986). Mercury methylation by bacteria. J. Basic Microbiol., 26. 499–504. https://doi.org/10.1002/jobm.3620260811
Tryphonas, L., Nilsen, N. O. (1970). The pathology of arylmercurial poissoning in swine. Can. J. Com. Med., 34. 181–184.
Tryphonas, L., Nilsen, N. O. (1973). Pathology of chronicalkylmercurial poisining is swine. Am. J. Vet. Res., 34. 379–383. https://doi.org/10.2460/ajvr.1973.34.03.379
Tsalev, G. L., Zaprianov, Z. K. (1984). Atomic absorption spectrometry in occupational and environmental health practice. CRC Press, Inc., Boca Raton, Fla., 1. 158–169.
Tsubaki, T., Irukayama, K. (1977). Minamata Disease. Elsevier/North-Holland, Amsterdam.
Vanderwater, L. J., Racz W. J., Norris, A. R., Buncel, E. (1983). Methylmercury distribution, metabolism and neurotoxicity in the mouse brain. Can. J. Physiol. Pharmacol., 61. 1487–1493. https://doi.org/10.1139/y83-213
Vermes, L. (1987). Heavy metals concerning sewage sludge land application. Int. Symp. „New results in the research of hardly known trace elements”. Ed. Pais I., Univ. Hort. Ind., Budapest, 165–185.
Vogt, H., Uebersvähr, K. H., Matthes, S. (1986). Einfluss von Methylquecksilberchloridzusätzen zum Legehennenfutter. 5. Spurenelement Symp., Ed. Anke, M., Fridrich-Schiller-Universität, Jena, 1120–1127.
Williams, D. F. (1981). Mercury. In: Systematic Aspects of Biocompatibility. Ed: Williams, D. F., Pergamon Press, Inc., Boca Raton, Fla., 1. 1–273.
Downloads
Published
Issue
Section
License
Copyright (c) 1999 Sarudi Imre, Rétfalvi Tamás, Szabó András

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

