Case Study of the Saharan Dust Effects on PM10 and PM2.5 Concentrations in Budapest in March 2022

Szerzők

  • Achraf Qor-El-Aine Hungarian University of Agriculture and Life Sciences, Doctoral School of Mechanical Engineering
  • Béres András Hungarian University of Agriculture and Life Sciences, University Laboratory Center
  • Géczi Gábor Hungarian University of Agriculture and Life Sciences, Institute of Environmental Science

DOI:

https://doi.org/10.33038/jcegi.3500

Kulcsszavak:

Saharan Dust Storms, PM10, PM2.5, MONARCH model, Budapest

Absztrakt

 

 

Szerző életrajzok

  • Achraf Qor-El-Aine, Hungarian University of Agriculture and Life Sciences, Doctoral School of Mechanical Engineering

    Achraf Qor-El-Aine
    PhD student
    Doctoral School of Mechanical Engineering, Hungarian University of Agriculture and Life Sciences,
    H-2100 Gödöllő, Páter Károly str. 1.
    qorelaine.achraf@gmail.com

  • Béres András, Hungarian University of Agriculture and Life Sciences, University Laboratory Center

    Dr. András Béres
    Head of Center
    University Laboratory Center, Hungarian University of Agriculture and Life Sciences,
    H-2100 Gödöllő, Páter Károly str. 1.
    beres.andras@uni-mate.hu

  • Géczi Gábor, Hungarian University of Agriculture and Life Sciences, Institute of Environmental Science

    Dr. Gábor Géczi PhD.
    associate professor
    Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences,
    H-2100 Gödöllő, Páter Károly str. 1.
    geczi.gabor@uni-mate.hu

Hivatkozások

ASUTOSH, A. – VINOJ, V. – MURUKESH, N. – RAMISETTY, R. – MITTAL, N. (2022): Investigation of June 2020 giant Saharan dust storm using remote sensing observations and model reanalysis. Scientific Reports, 12(1), 6114. DOI: https://doi.org/10.1038/s41598-022-10017-1

BARNABA, F. – ROMERO, A.N. – BOLIGNANO, A. – BASART, S. – RENZI, M. (2022): Multiannual assessment of the desert dust impact on air quality in Italy combining PM10 data with physics-based and geostatistical models. Environment International, 163, 107204. DOI: https://doi.org/10.1016/j.envint.2022.107204

BIBI, M. – SAAD, M. – MASMOUDI, M. – LAURENT, B. – ALFARO, S.C. (2020): Long-term (1980–2018) spatial and temporal variability of the atmospheric dust load and deposition fluxes along the North-African coast of the Mediterranean Sea. Atmospheric Research, 234, 104689. DOI: https://doi.org/10.1016/j.atmosres.2019.104689

CHAKRABORTY, S. – GUAN, B. – WALISER, D.E. – DA SILVA, A.M. – ULUATAM, S. – HESS, P. (2021): Extending the Atmospheric River Concept to Aerosols: Climate and Air Quality Impacts. Geophysical Research Letters, 48(9), e2020GL091827. DOI: https://doi.org/10.1029/2020GL091827

DELEVA, A. – PESHEV, Z. – VULKOVA, L. – DREISCHUH, T. (2021): Lidar study of unusual winter Saharan dust loads above Sofia, Bulgaria: Impacts on the local weather and troposphere. Journal of Applied Remote Sensing, 15(2), 024517. DOI: https://doi.org/10.1117/1.JRS.15.024517

DERBYSHIRE, E. (2007): Natural Minerogenic Dust and Human Health. AMBIO: A Journal of the Human Environment, 36(1), 73–77. DOI: https://doi.org/10.1579/0044-7447(2007)36[73:NMDAHH]2.0.CO;2

DI TOMASO, E. – ESCRIBANO, J. – BASART, S. – GINOUX, P. – MACCHIA, F. – BARNABA, F. – BENINCASA, F. – BRETONNIÈRE, P.A. – BUÑUEL, A. – CASTRILLO, M. – CUEVAS, E. – FORMENTI, P. – GONÇALVES, M. – JORBA, O. – KLOSE, M. – MONA, L. – MONTANÉ PINTO, G. – MYTILINAIOS, M. – OBISO, V. – PÉREZ GARCÍA-PANDO, C. (2022): The MONARCH high-resolution reanalysis of desert dust aerosol over Northern Africa, the Middle East and Europe (2007–2016). Earth System Science Data, 14(6), 2785–2816. DOI: https://doi.org/10.5194/essd-14-2785-2022

DÍAZ, J. – TOBÍAS, A. – LINARES, C. (2012): Saharan dust and association between particulate matter and case-specific mortality: A case-crossover analysis in Madrid (Spain). Environmental Health, 11(1), 11. DOI: https://doi.org/10.1186/1476-069X-11-11

DOES, M. – KORTE, L. – MUNDAY, C. – BRUMMER, G.J. – STUUT, J.B. (2016): Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic. Atmospheric Chemistry and Physics, 16, 13697–13710. DOI: https://doi.org/10.5194/acp-16-13697-2016

ECK, T.F. – HOLBEN, B.N. – REID, J.S. – DUBOVIK, O. – SMIRNOV, A. – O’NEILL, N.T. – SLUTSKER, I. – KINNE, S. (1999): Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. Journal of Geophysical Research: Atmospheres, 104(D24), 31333–31349. DOI: https://doi.org/10.1029/1999JD900923

FERENCZI, Z. – IMRE, K. – LAKATOS, M. – MOLNÁR, Á. – BOZÓ, L. – HOMOLYA, E. – GELENCSÉR, A. (2021): Long-term Characterization of Urban PM10 in Hungary. Aerosol and Air Quality Research, 21(10), 210048. DOI: https://doi.org/10.4209/aaqr.210048

FRANCIS, D. – FONSECA, R. – NELLI, N. – BOZKURT, D. – PICARD, G. – GUAN, B. (2022): Atmospheric rivers drive exceptional Saharan dust transport towards Europe. Atmospheric Research, 266, 105959. DOI: https://doi.org/10.1016/j.atmosres.2021.105959

GKIKAS, A. – OBISO, V. – PÉREZ GARCÍA-PANDO, C. – JORBA, O. – HATZIANASTASSIOU, N.– VENDRELL, L.– BASART, S.– SOLOMOS, S. – GASSÓ, S. – BALDASANO, J. M. (2018): Direct radiative effects during intense Mediterranean desert dust outbreaks. Atmospheric Chemistry and Physics, 18(12), 8757–8787. DOI: https://doi.org/10.5194/acp-18-8757-2018

GOUDIE, A.S. – MIDDLETON, N.J. (2001): Saharan dust storms: Nature and consequences. Earth-Science Reviews, 56(1), 179–204. DOI: https://doi.org/10.1016/S0012-8252(01)00067-8

HSIEH, N.H. – LIAO, C.M. (2013): Assessing exposure risk for dust storm events-associated lung function decrement in asthmatics and implications for control. Atmospheric Environment, 68, 256–264. DOI: https://doi.org/10.1016/j.atmosenv.2012.11.064

KLOSE, M. – JORBA, O. – GONÇALVES AGEITOS, M. – ESCRIBANO, J.– DAWSON, M.L. – OBISO, V. – DI TOMASO, E. – BASART, S. – MONTANÉ PINTO, G. – MACCHIA, F. – GINOUX, P. – GUERSCHMAN, J. – PRIGENT, C. – HUANG, Y. – KOK, J.F. – MILLER, R.L.– PÉREZ GARCÍA-PANDO, C. (2021): Mineral dust cycle in the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (MONARCH) Version 2.0. Geoscientific Model Development, 14(10), 6403–6444. DOI: https://doi.org/10.5194/gmd-14-6403-2021

MAHOWALD, N. – ALBANI, S. – KOK, J.F. – ENGELSTAEDER, S. – SCANZA, R. – WARD, D.S. – FLANNER, M.G. (2014): The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Research, 15, 53–71. DOI: https://doi.org/10.1016/j.aeolia.2013.09.002

MALLONE, S. – STAFOGGIA, M. – FAUSTINI, A. – GOBBI, G.P.– MARCONI, A. – FORASTIERE, F. (2011): Saharan Dust and Associations between Particulate Matter and Daily Mortality in Rome, Italy. Environmental Health Perspectives, 119(10), 1409–1414. DOI: https://doi.org/10.1289/ehp.1003026

MICHELOT, N. – ENDLICHER, W. – CARREGA, P. – MARTIN, N. – FAVEZ, O. – LANGNER, M. (2015): Impact of a Saharan dust outbreak on PM10 ground levels in Southeastern France. Climatologie, 12, 65–82. DOI: https://doi.org/10.4267/climatologie.1129

MONTEIRO, A. – BASART, S. – KAZADZIS, S. – VOTSIS, A. – GKIKAS, A. – VANDENBUSSCHE, S. – TOBIAS, A. – GAMA, C. – GARCÍA-PANDO, C.P. – TERRADELLAS, E. – NOTAS, G. – MIDDLETON, N. – KUSHTA, J. – AMIRIDIS, V. – LAGOUVARDOS, K. – KOSMOPOULOS, P. – KOTRONI, V. – KANAKIDOU, M. – MIHALOPOULOS, N. – NICKOVIC, S. (2022): Multi-sectoral impact assessment of an extreme African dust episode in the Eastern Mediterranean in March 2018. Science of The Total Environment, 843, 156861. DOI: https://doi.org/10.1016/j.scitotenv.2022.156861

OPP, C. – GROLL, M. – ABBASI, H. – FOROUSHANI, M.A. (2021): Causes and Effects of Sand and Dust Storms: What Has Past Research Taught Us? A Survey. Journal of Risk and Financial Management, 14(7), 326. DOI: https://doi.org/10.3390/jrfm14070326

PEREZ, L. – TOBÍAS, A. – QUEROL, X. – PEY, J. – ALASTUEY, A. – DÍAZ, J. – SUNYER, J. (2012): Saharan dust, particulate matter and cause-specific mortality: A case–crossover study in Barcelona (Spain). Environment International, 48, 150–155. DOI: https://doi.org/10.1016/j.envint.2012.07.001

PROSPERO, J.M. – BARKLEY, A.E. – GASTON, C.J. – GATINEAU, A. – CAMPOS, Y. –SANSANO, A. – PANECHOU, K. (2020): Characterizing and Quantifying African Dust Transport and Deposition to South America: Implications for the Phosphorus Budget in the Amazon Basin. Global Biogeochemical Cycles, 34(9), e2020GB006536. DOI: https://doi.org/10.1029/2020GB006536

QOR-EL-AINE, A. – BÉRES, A. – GÉCZI, G. (2021): Dust storm simulation over the Sahara Desert (Moroccan and Mauritanian regions) using HYSPLIT. Atmospheric Science Letters, 23(4), e1076. DOI: https://doi.org/10.1002/asl.1076

REMOUNDAKI, E. – BOURLIVA, A. – KOKKALIS, P. – MAMOURI, R.E. – PAPAYANNIS, A. – GRIGORATOS, T. – SAMARA, C. – TSEZOS, M. (2011): PM10 composition during an intense Saharan dust transport event over Athens (Greece). Science of The Total Environment, 409(20), 4361–4372. DOI: https://doi.org/10.1016/j.scitotenv.2011.06.026

SALVADOR, P. – ARTÍÑANO, B. – QUEROL, X. – ALASTUEY, A. (2008): A combined analysis of backward trajectories and aerosol chemistry to characterise long-range transport episodes of particulate matter: The Madrid air basin, a case study. Science of The Total Environment, 390(2), 495–506. DOI: https://doi.org/10.1016/j.scitotenv.2007.10.052

SALVADOR, P. – PEY, J. – PÉREZ, N. – QUEROL, X. – ARTÍÑANO, B. (2022): Increasing atmospheric dust transport towards the western Mediterranean over 1948–2020. npj Climate and Atmospheric Science, 5(1), 1–10. DOI: https://doi.org/10.1038/s41612-022-00256-4

SESSIONS, W.R. – REID, J.S. – BENEDETTI, A. – COLARCO, P.R. – DA SILVA, A. – LU, S. – SEKIYAMA, T. – TANAKA, T.Y. – BALDASANO, J.M. – BASART, S. – BROOKS, M.E. – ECK, T.F.– IREDELL, M. – HANSEN, J.A. – JORBA, O.C. – JUANG, H.M.H. – LYNCH, P. – MORCRETTE, J.J.– MOORTHI, S. – WESTPHAL, D.L. (2015): Development towards a global operational aerosol consensus: Basic climatological characteristics of the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME). Atmospheric Chemistry and Physics, 15(1), 335–362. DOI: https://doi.org/10.5194/acp-15-335-2015

SUCHODOLETZ, H. – GLASER, B. – THRIPPLETON, T. – BRODER, T. – ZANG, U. – EIGENMANN, R. – KOPP, B. – REICHERT, M. – ZÖLLER, L. (2013): The influence of Saharan dust deposits on La Palma soil properties (Canary Islands, Spain). Catena, 103, 44–52. DOI: https://doi.org/10.1016/j.catena.2011.07.005

ȚÎMPU, S. – SFÎCĂ, L. – DOBRI, R.V. – CAZACU, M.M. – NITA, A.I. – BIRSAN, M.V. (2020): Tropospheric Dust and Associated Atmospheric Circulations over the Mediterranean Region with Focus on Romania’s Territory. Atmosphere, 11(4), 349. DOI: https://doi.org/10.3390/atmos11040349

WANG, Q. – GU, J. – WANG, X. (2020): The impact of Sahara dust on air quality and public health in European countries. Atmospheric Environment, 241, 117771. DOI: https://doi.org/10.1016/j.atmosenv.2020.117771

XIAN, P. – REID, J.S.– HYER, E.J. – SAMPSON, C.R. – RUBIN, J.I. – ADES, M. – ASENCIO, N. – BASART, S. – BENEDETTI, A. – BHATTACHARJEE, P.S. – BROOKS, M.E. – COLARCO, P.R. – DA SILVA, A.M. – ECK, T.F.– GUTH, J. – JORBA, O. – KOUZNETSOV, R. – KIPLING, Z. – SOFIEV, M. – ZHANG, J. (2019): Current state of the global operational aerosol multi-model ensemble: An update from the International Cooperative for Aerosol Prediction (ICAP). Quarterly Journal of the Royal Meteorological Society, 145(S1), 176–209. DOI: https://doi.org/10.1002/qj.3497

YU, H. – TAN, Q. – ZHOU, L. – ZHOU, Y. – BIAN, H. – CHIN, M. – RYDER, C.L. – LEVY, R.C. – PRADHAN, Y. – SHI, Y. – SONG, Q. – ZHANG, Z. – COLARCO, P.R. – KIM, D. – REMER, L.A. – YUAN, T. – MAYOL-BRACERO, O. – HOLBEN, B.N. (2021): Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020. Atmospheric Chemistry and Physics, 21(16), 12359–12383. DOI: https://doi.org/10.5194/acp-21-12359-2021

Letöltések

Megjelent

2022-12-13

Hogyan kell idézni

Case Study of the Saharan Dust Effects on PM10 and PM2.5 Concentrations in Budapest in March 2022. (2022). Journal of Central European Green Innovation, 10(Suppl 1), 67-78. https://doi.org/10.33038/jcegi.3500