Case Study of the Saharan Dust Effects on PM10 and PM2.5 Concentrations in Budapest in March 2022

Authors

  • Achraf Qor-El-Aine Hungarian University of Agriculture and Life Sciences, Doctoral School of Mechanical Engineering
  • András Béres Hungarian University of Agriculture and Life Sciences, University Laboratory Center
  • Gábor Géczi Hungarian University of Agriculture and Life Sciences, Institute of Environmental Science

DOI:

https://doi.org/10.33038/jcegi.3500

Keywords:

Saharan Dust Storms, PM10, PM2.5, MONARCH model, Budapest

Abstract

The Earth's climatic system is greatly dependent on atmospheric mineral dust. Dust particles are regarded as one of the less well-known contributors to recent climatic changes, much like other aerosol constituents. Fifty to seventy percent of the world's budget for mineral dust comes from the Sahara Desert areas. These sources can produce dust-loaded air masses that can travel great distances and affect many parts of the world including Europe, the Middle East, North and South America. In March 2022 Europe faced two Saharan Dust storms (14-19 and 28-31), that affected many countries including Hungary. We used registered measurements of PM10 and PM2.5 concentrations from urban background air quality station in Budapest and MONARCH model to assess the effects of the two Saharan Dust storms on Budapest. As measured by daily average concentrations, PM10 and PM2.5 concentrations rose by 12 µg/m3 and 10 µg/m3 respectively during the first Saharan Dust event (SDE1), and by 14 µg/m3 and 5 µg/m3 during the Second Saharan Dust event (SDE2). While the effects of both SDEs on PM10 were nearly identical, SDE1 had a greater impact on PM2.5 concentrations than SDE2. Moreover, the dust load arriving to Budapest as estimated by the MONARCH model was higher in the SDE1 (1.26 g/m3), and that was associated with high values of dust surface concentration and Dust optical depth (243.1 µg/m3 and 0.71).

Author Biographies

  • Achraf Qor-El-Aine, Hungarian University of Agriculture and Life Sciences, Doctoral School of Mechanical Engineering

    Achraf Qor-El-Aine
    PhD student
    Doctoral School of Mechanical Engineering, Hungarian University of Agriculture and Life Sciences,
    H-2100 Gödöllő, Páter Károly str. 1.
    qorelaine.achraf@gmail.com

  • András Béres, Hungarian University of Agriculture and Life Sciences, University Laboratory Center

    Dr. András Béres
    Head of Center
    University Laboratory Center, Hungarian University of Agriculture and Life Sciences,
    H-2100 Gödöllő, Páter Károly str. 1.
    beres.andras@uni-mate.hu

  • Gábor Géczi, Hungarian University of Agriculture and Life Sciences, Institute of Environmental Science

    Dr. Gábor Géczi PhD.
    associate professor
    Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences,
    H-2100 Gödöllő, Páter Károly str. 1.
    geczi.gabor@uni-mate.hu

References

ASUTOSH, A. – VINOJ, V. – MURUKESH, N. – RAMISETTY, R. – MITTAL, N. (2022): Investigation of June 2020 giant Saharan dust storm using remote sensing observations and model reanalysis. Scientific Reports, 12(1), 6114. DOI: https://doi.org/10.1038/s41598-022-10017-1

BARNABA, F. – ROMERO, A.N. – BOLIGNANO, A. – BASART, S. – RENZI, M. (2022): Multiannual assessment of the desert dust impact on air quality in Italy combining PM10 data with physics-based and geostatistical models. Environment International, 163, 107204. DOI: https://doi.org/10.1016/j.envint.2022.107204

BIBI, M. – SAAD, M. – MASMOUDI, M. – LAURENT, B. – ALFARO, S.C. (2020): Long-term (1980–2018) spatial and temporal variability of the atmospheric dust load and deposition fluxes along the North-African coast of the Mediterranean Sea. Atmospheric Research, 234, 104689. DOI: https://doi.org/10.1016/j.atmosres.2019.104689

CHAKRABORTY, S. – GUAN, B. – WALISER, D.E. – DA SILVA, A.M. – ULUATAM, S. – HESS, P. (2021): Extending the Atmospheric River Concept to Aerosols: Climate and Air Quality Impacts. Geophysical Research Letters, 48(9), e2020GL091827. DOI: https://doi.org/10.1029/2020GL091827

DELEVA, A. – PESHEV, Z. – VULKOVA, L. – DREISCHUH, T. (2021): Lidar study of unusual winter Saharan dust loads above Sofia, Bulgaria: Impacts on the local weather and troposphere. Journal of Applied Remote Sensing, 15(2), 024517. DOI: https://doi.org/10.1117/1.JRS.15.024517

DERBYSHIRE, E. (2007): Natural Minerogenic Dust and Human Health. AMBIO: A Journal of the Human Environment, 36(1), 73–77. DOI: https://doi.org/10.1579/0044-7447(2007)36[73:NMDAHH]2.0.CO;2

DI TOMASO, E. – ESCRIBANO, J. – BASART, S. – GINOUX, P. – MACCHIA, F. – BARNABA, F. – BENINCASA, F. – BRETONNIÈRE, P.A. – BUÑUEL, A. – CASTRILLO, M. – CUEVAS, E. – FORMENTI, P. – GONÇALVES, M. – JORBA, O. – KLOSE, M. – MONA, L. – MONTANÉ PINTO, G. – MYTILINAIOS, M. – OBISO, V. – PÉREZ GARCÍA-PANDO, C. (2022): The MONARCH high-resolution reanalysis of desert dust aerosol over Northern Africa, the Middle East and Europe (2007–2016). Earth System Science Data, 14(6), 2785–2816. DOI: https://doi.org/10.5194/essd-14-2785-2022

DÍAZ, J. – TOBÍAS, A. – LINARES, C. (2012): Saharan dust and association between particulate matter and case-specific mortality: A case-crossover analysis in Madrid (Spain). Environmental Health, 11(1), 11. DOI: https://doi.org/10.1186/1476-069X-11-11

DOES, M. – KORTE, L. – MUNDAY, C. – BRUMMER, G.J. – STUUT, J.B. (2016): Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic. Atmospheric Chemistry and Physics, 16, 13697–13710. DOI: https://doi.org/10.5194/acp-16-13697-2016

ECK, T.F. – HOLBEN, B.N. – REID, J.S. – DUBOVIK, O. – SMIRNOV, A. – O’NEILL, N.T. – SLUTSKER, I. – KINNE, S. (1999): Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. Journal of Geophysical Research: Atmospheres, 104(D24), 31333–31349. DOI: https://doi.org/10.1029/1999JD900923

FERENCZI, Z. – IMRE, K. – LAKATOS, M. – MOLNÁR, Á. – BOZÓ, L. – HOMOLYA, E. – GELENCSÉR, A. (2021): Long-term Characterization of Urban PM10 in Hungary. Aerosol and Air Quality Research, 21(10), 210048. DOI: https://doi.org/10.4209/aaqr.210048

FRANCIS, D. – FONSECA, R. – NELLI, N. – BOZKURT, D. – PICARD, G. – GUAN, B. (2022): Atmospheric rivers drive exceptional Saharan dust transport towards Europe. Atmospheric Research, 266, 105959. DOI: https://doi.org/10.1016/j.atmosres.2021.105959

GKIKAS, A. – OBISO, V. – PÉREZ GARCÍA-PANDO, C. – JORBA, O. – HATZIANASTASSIOU, N.– VENDRELL, L.– BASART, S.– SOLOMOS, S. – GASSÓ, S. – BALDASANO, J. M. (2018): Direct radiative effects during intense Mediterranean desert dust outbreaks. Atmospheric Chemistry and Physics, 18(12), 8757–8787. DOI: https://doi.org/10.5194/acp-18-8757-2018

GOUDIE, A.S. – MIDDLETON, N.J. (2001): Saharan dust storms: Nature and consequences. Earth-Science Reviews, 56(1), 179–204. DOI: https://doi.org/10.1016/S0012-8252(01)00067-8

HSIEH, N.H. – LIAO, C.M. (2013): Assessing exposure risk for dust storm events-associated lung function decrement in asthmatics and implications for control. Atmospheric Environment, 68, 256–264. DOI: https://doi.org/10.1016/j.atmosenv.2012.11.064

KLOSE, M. – JORBA, O. – GONÇALVES AGEITOS, M. – ESCRIBANO, J.– DAWSON, M.L. – OBISO, V. – DI TOMASO, E. – BASART, S. – MONTANÉ PINTO, G. – MACCHIA, F. – GINOUX, P. – GUERSCHMAN, J. – PRIGENT, C. – HUANG, Y. – KOK, J.F. – MILLER, R.L.– PÉREZ GARCÍA-PANDO, C. (2021): Mineral dust cycle in the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (MONARCH) Version 2.0. Geoscientific Model Development, 14(10), 6403–6444. DOI: https://doi.org/10.5194/gmd-14-6403-2021

MAHOWALD, N. – ALBANI, S. – KOK, J.F. – ENGELSTAEDER, S. – SCANZA, R. – WARD, D.S. – FLANNER, M.G. (2014): The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Research, 15, 53–71. DOI: https://doi.org/10.1016/j.aeolia.2013.09.002

MALLONE, S. – STAFOGGIA, M. – FAUSTINI, A. – GOBBI, G.P.– MARCONI, A. – FORASTIERE, F. (2011): Saharan Dust and Associations between Particulate Matter and Daily Mortality in Rome, Italy. Environmental Health Perspectives, 119(10), 1409–1414. DOI: https://doi.org/10.1289/ehp.1003026

MICHELOT, N. – ENDLICHER, W. – CARREGA, P. – MARTIN, N. – FAVEZ, O. – LANGNER, M. (2015): Impact of a Saharan dust outbreak on PM10 ground levels in Southeastern France. Climatologie, 12, 65–82. DOI: https://doi.org/10.4267/climatologie.1129

MONTEIRO, A. – BASART, S. – KAZADZIS, S. – VOTSIS, A. – GKIKAS, A. – VANDENBUSSCHE, S. – TOBIAS, A. – GAMA, C. – GARCÍA-PANDO, C.P. – TERRADELLAS, E. – NOTAS, G. – MIDDLETON, N. – KUSHTA, J. – AMIRIDIS, V. – LAGOUVARDOS, K. – KOSMOPOULOS, P. – KOTRONI, V. – KANAKIDOU, M. – MIHALOPOULOS, N. – NICKOVIC, S. (2022): Multi-sectoral impact assessment of an extreme African dust episode in the Eastern Mediterranean in March 2018. Science of The Total Environment, 843, 156861. DOI: https://doi.org/10.1016/j.scitotenv.2022.156861

OPP, C. – GROLL, M. – ABBASI, H. – FOROUSHANI, M.A. (2021): Causes and Effects of Sand and Dust Storms: What Has Past Research Taught Us? A Survey. Journal of Risk and Financial Management, 14(7), 326. DOI: https://doi.org/10.3390/jrfm14070326

PEREZ, L. – TOBÍAS, A. – QUEROL, X. – PEY, J. – ALASTUEY, A. – DÍAZ, J. – SUNYER, J. (2012): Saharan dust, particulate matter and cause-specific mortality: A case–crossover study in Barcelona (Spain). Environment International, 48, 150–155. DOI: https://doi.org/10.1016/j.envint.2012.07.001

PROSPERO, J.M. – BARKLEY, A.E. – GASTON, C.J. – GATINEAU, A. – CAMPOS, Y. –SANSANO, A. – PANECHOU, K. (2020): Characterizing and Quantifying African Dust Transport and Deposition to South America: Implications for the Phosphorus Budget in the Amazon Basin. Global Biogeochemical Cycles, 34(9), e2020GB006536. DOI: https://doi.org/10.1029/2020GB006536

QOR-EL-AINE, A. – BÉRES, A. – GÉCZI, G. (2021): Dust storm simulation over the Sahara Desert (Moroccan and Mauritanian regions) using HYSPLIT. Atmospheric Science Letters, 23(4), e1076. DOI: https://doi.org/10.1002/asl.1076

REMOUNDAKI, E. – BOURLIVA, A. – KOKKALIS, P. – MAMOURI, R.E. – PAPAYANNIS, A. – GRIGORATOS, T. – SAMARA, C. – TSEZOS, M. (2011): PM10 composition during an intense Saharan dust transport event over Athens (Greece). Science of The Total Environment, 409(20), 4361–4372. DOI: https://doi.org/10.1016/j.scitotenv.2011.06.026

SALVADOR, P. – ARTÍÑANO, B. – QUEROL, X. – ALASTUEY, A. (2008): A combined analysis of backward trajectories and aerosol chemistry to characterise long-range transport episodes of particulate matter: The Madrid air basin, a case study. Science of The Total Environment, 390(2), 495–506. DOI: https://doi.org/10.1016/j.scitotenv.2007.10.052

SALVADOR, P. – PEY, J. – PÉREZ, N. – QUEROL, X. – ARTÍÑANO, B. (2022): Increasing atmospheric dust transport towards the western Mediterranean over 1948–2020. npj Climate and Atmospheric Science, 5(1), 1–10. DOI: https://doi.org/10.1038/s41612-022-00256-4

SESSIONS, W.R. – REID, J.S. – BENEDETTI, A. – COLARCO, P.R. – DA SILVA, A. – LU, S. – SEKIYAMA, T. – TANAKA, T.Y. – BALDASANO, J.M. – BASART, S. – BROOKS, M.E. – ECK, T.F.– IREDELL, M. – HANSEN, J.A. – JORBA, O.C. – JUANG, H.M.H. – LYNCH, P. – MORCRETTE, J.J.– MOORTHI, S. – WESTPHAL, D.L. (2015): Development towards a global operational aerosol consensus: Basic climatological characteristics of the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME). Atmospheric Chemistry and Physics, 15(1), 335–362. DOI: https://doi.org/10.5194/acp-15-335-2015

SUCHODOLETZ, H. – GLASER, B. – THRIPPLETON, T. – BRODER, T. – ZANG, U. – EIGENMANN, R. – KOPP, B. – REICHERT, M. – ZÖLLER, L. (2013): The influence of Saharan dust deposits on La Palma soil properties (Canary Islands, Spain). Catena, 103, 44–52. DOI: https://doi.org/10.1016/j.catena.2011.07.005

ȚÎMPU, S. – SFÎCĂ, L. – DOBRI, R.V. – CAZACU, M.M. – NITA, A.I. – BIRSAN, M.V. (2020): Tropospheric Dust and Associated Atmospheric Circulations over the Mediterranean Region with Focus on Romania’s Territory. Atmosphere, 11(4), 349. DOI: https://doi.org/10.3390/atmos11040349

WANG, Q. – GU, J. – WANG, X. (2020): The impact of Sahara dust on air quality and public health in European countries. Atmospheric Environment, 241, 117771. DOI: https://doi.org/10.1016/j.atmosenv.2020.117771

XIAN, P. – REID, J.S.– HYER, E.J. – SAMPSON, C.R. – RUBIN, J.I. – ADES, M. – ASENCIO, N. – BASART, S. – BENEDETTI, A. – BHATTACHARJEE, P.S. – BROOKS, M.E. – COLARCO, P.R. – DA SILVA, A.M. – ECK, T.F.– GUTH, J. – JORBA, O. – KOUZNETSOV, R. – KIPLING, Z. – SOFIEV, M. – ZHANG, J. (2019): Current state of the global operational aerosol multi-model ensemble: An update from the International Cooperative for Aerosol Prediction (ICAP). Quarterly Journal of the Royal Meteorological Society, 145(S1), 176–209. DOI: https://doi.org/10.1002/qj.3497

YU, H. – TAN, Q. – ZHOU, L. – ZHOU, Y. – BIAN, H. – CHIN, M. – RYDER, C.L. – LEVY, R.C. – PRADHAN, Y. – SHI, Y. – SONG, Q. – ZHANG, Z. – COLARCO, P.R. – KIM, D. – REMER, L.A. – YUAN, T. – MAYOL-BRACERO, O. – HOLBEN, B.N. (2021): Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020. Atmospheric Chemistry and Physics, 21(16), 12359–12383. DOI: https://doi.org/10.5194/acp-21-12359-2021

Downloads

Published

2022-12-13

Issue

Section

Cikk szövege

How to Cite

Case Study of the Saharan Dust Effects on PM10 and PM2.5 Concentrations in Budapest in March 2022. (2022). Journal of Central European Green Innovation, 10(Suppl 1), 67-78. https://doi.org/10.33038/jcegi.3500