The Microbiological Characteristics of the Microwave-treated Samples and the Convection-heat-treated Samples Shows No Deviation in Case of Surface Water Treatment

Authors

  • András Barczi Hungarian University of Agricultural and Life Sciences, Institute of Environmental Sciences, Department of Environmental Analysis and Environmental Technology, 2100 Gödöllő, Páter K. u. 1.
  • Anett Lippai Biokör Kft. 1089 Budapest, Bláthy Ottó u. 41.

DOI:

https://doi.org/10.33038/jcegi.4570

Keywords:

microwave heat treatment, microbiological parameters, TBC, heat, water

Abstract

Applying the comparative method, we applied microwave and convective heat treatment on water samples from surface water. By determining microbiological parameters, we searched for detectable deviations in any parameter beyond the effect of heat treatments. The effect of heat treatments was detectable in all cases, but the thermal effects were the same regardless of the method of heat treatment, at a frequency of 2450MHz and a power of 900W. We observed microbiological characteristics that may not only change with thermal effects. Highlighting that, our research is based on the exact same treatment time and applied temperature. The microbiological characteristics of the microwave-heat-treated samples showed no deviation as those of the convectively heat-treated samples; this was checked by two-sample t-test at a significance level of p<0.05.

Author Biographies

  • András Barczi, Hungarian University of Agricultural and Life Sciences, Institute of Environmental Sciences, Department of Environmental Analysis and Environmental Technology, 2100 Gödöllő, Páter K. u. 1.

    assistant professor
    barczi.andras@uni-mate.hu

  • Anett Lippai, Biokör Kft. 1089 Budapest, Bláthy Ottó u. 41.

    Head of Microbiology
    lippai.anett@gmail.com

References

BARNABAS, J. – SIORES, E. – LAMB, A. (2010): Non-Thermal Microwave Reduction of Pathogenic Cellular Population. International Journal of Food Engineering 6(5) https://doi.org/10.2202/1556-3758.1878

BEKE, J. – KURJÁK, Z. – BESSENYEI, K. (2014): Enhanced Drying Due to Nonthermal Effects from Microwave Irradiation. Drying Technology, 32(11), 1269–1276. https://doi.org/10.1080/07373937.2014.896377

BESZÉDES, S. – KESZTHELYI-SZABÓ, G. – HODÚR, C. (2013a): Comparison of drying characteristic and biodegradability of dairy sludge using microwave and infrared drying. Annals of Faculty Engineering Hunedoara - International Journal of Engineering 11(4), 297–300.

BESZÉDES, S. – KOVÁCS, P.V.R. – KERTÉSZ, SZ. – SZABÓ, G. – HODÚR, C. (2013b): Experiences with microwave pre-treatments of sweet whey prior to mesophilic anaerobic digestion. In: Synergy 2013 - CD of Full Papers. SZIE Gépészmérnöki Kar, Gödöllő, 1–6.

BHUSHAND, D.M. – VYAWAREA, A.N. – WASNIK, P.G. – AGRAWAL, A.K. – SANDEY, K.K. (2017): Microwave processing of milk: A rewiew. In AGRAWAL, A.K. – GOYAL, M.R. editors. Processing technologies for milk and milk products: Methods, applications, and energy usage. Boca Ratón, FL: CRC Press. 219–251.

BIFFINGER, J.C. – FITZGERALD, L.A. – DAVIS, M.J. – COCKRELL, A.L. – CUSICK, K.D. (2016): Microwave Enhancement of Thermophiles. US Patent Application: 2016/0115,440 available at: http://www.patentbuddy.com/Patent/20160115440 download: 2023.03.22.

CHANDRASEKARAN, S. – RAMANATHAN, S. – BASAK, T. (2013): Microwave food processing: A review. Food Research International, 52, 243–261. https://doi.org/10.1016/j.foodres.2013.02.033

CUSICK, K.D. – LIN, B. – MALANOSKI, A.P. – STRYCHARZ-GLAVEN, S.M. – COCKRELL-ZUGELL, A. – FITZGERALD, L.A. – CRAMER, J.A. – BARLOW, D.E. – BOYD, T.J. – BIFFINGER, J.C. (2016): Molecular mechanisms contributing to the growth and physiology of an extremophile cultured with dielectric heating. Appl Environ Microbiol 82, 6233–6246. https://doi.org/10.1128/AEM.02020-16

GARNACHO, G. – KASZAB, T. – HORVÁTH, M. – GÉCZI, G. (2012): Comparative Study of Heat-treated Orange Juice. Journal of Microbiology, Biotechnology and Food Science 2(2), 446–457.

GÉCZI, G. – SEMBERY, P. (2009): Homogeneous heating in the inhomogeneous electric field Bulletin of the Szent István University 2009 1, 309–317.

GÉCZI, G. – HORVÁTH, M. – KASZAB, T. – ALEMANY, G.G. (2013a): No major differences found between the effects of microwave-based and conventional heat treatment methods on two different liquid foods. PLoS ONE 8, 1–12. https://doi.org/10.1371/journal.pone.0053720

GÉCZI, G. – KORZENSZKY, P. – HORVÁTH, M. (2013b): A tehéntej hagyományos pasztőrözésének és mikrohullámú kezelésének összehasonlítása Magyar Állatorvosok Lapja 135(9), 557–564.

GÉCZI, G. – KORZENSZKY, P. – SZABÓ, T. – BENSE, L. – URBÁNYI, B. (2013c): Heat Treatments versus Fermentation Animal Welfare Ethology and Housing Systems 9(3), 445–454. available at: http://animalwelfare.szie.hu/sites/default/files/cikkek/201303/AWETH20133448454.pdf

GÉCZI, G. – KORZENSZKY, P. – SZAKMÁR, K. (2017): Cold chain interruption by consumers significantly reduces shelf life of vacuum-packed pork ham slices Acta Alimentaria 46(4), 508–516. https://doi.org/10.1556/066.2017.46.4.14

GUO, Q. – SUN, D. – CHENG, J. – HAN, Z. (2017): Microwave processing techniques and their recent applications in the food industry. Trends in Food Science and Technology 67, 236–247. https://doi.org/10.1016/j.tifs.2017.07.007

HAMMAD, A.M. (2015): Effect of High Domestic Microwave Radiations at Sub-Lethal Temperature on the Bacterial Content of Raw Milk. Alexandria Journal of Veterinary Sciences 47, 47–52. http://dx.doi.org/10.5455/ajvs.201107

HAN, X. – BAI, L. – WANG, Y. – LI, Y. – ZHAO, D. – HU, G. – HAO, J. – GU, M. – GUO, X. – WANG, W. (2020): Ovarian Inde of KM Mice Influenced by Longer Term Consumption of Microwave-Heated Milk. J Food Prot. 83(6), 1066–1071. https://doi.org/10.4315/JFP-19-572

HARANGHY, L. – KERTÉSZ, SZ. – VERÉB, G. – LÁSZLÓ ZS. – VÁGVÖLGYI A. – JÁKÓI Z. – CZUPY, I. – HODÚR, C. – RÁKHELY, G. – BESZÉDES, S. (2020): Intensification of the biodegradation of wastewater sludge by microwave irradiation. Geosciences and Engineering 8, 322–333.

JÁKÓI, Z. – LEMMER, B. – BESZÉDES, S. – HODÚR, C. (2018): Comparison of the efficiency of microwave assisted acidic-and alkaline pretreatment on the aerobic and anaerobic biodegradability of sludge. In: Géczi, G. – Korzenszky, P. editors. Researched Risk Factors of Food Chain. Szent István Egyetemi Kiadó, Gödöllő, 83–86.

JÁKÓI, Z. – SZABÓ, A. – VÁGVÖLGYI, A. – HODÚR, C. – BESZÉDES, S. (2019): Applicability of microwave irradiation for enhanced biodegradability of tobacco biomass. Acta Technica Corviensis, Bulletin of Engineering 12(2),19–24.

JIMÉNEZ-SÁNCHEZ, C. – LOZANO-SÁNCHEZ, J. – SEGURA-CARRETERO, A. – FERNÁNDEZ-GUTIÉRREZ, A. (2017): Alternatives to conventional thermal treatments in fruit-juice processing. Part 2: Effect on composition, phytochemical content, and physicochemical, rheological, and organoleptic properties of fruit juices. Crit Rev Food Sci Nutr. 57(3), 637–652. https://doi.org/10.1080/10408398.2014.914019

KHAN, M.A. – DEIB, G. – DELDAR, B. – PATEL, A.M. – BARR, J.S. (2018): Efficacy and Safety of Percutaneous Microwave Ablation and Cementoplasty in the Treatment of Painful Spinal Metastases and Myeloma. American Journal of Neuroradiology 39(7), 1376–1383. https://doi.org/10.3174/ajnr.A5680

KORZENSZKY, P. – SEMBERY, P. – GÉCZI, G. (2013): Microwave Milk Pasteurization without Food Safety Risk. Potravinarstvo 7(1), 45–48. https://doi.org/10.5219/260

KORZENSZKY, P. – MOLNÁR E. (2014): Examination of heat treatments at preservation of grape must. Potravinarstvo 8(1), 38–42. https://doi.org/10.5219/328

KORZENSZKY, P. – GÉCZI, G. – KASZAB, T. (2020): Comparing microwave and convective heat treatment methods by applying colour parameters of wine. Progress in Agricultural Engineering Sciences 16(S1), 105–113. https://doi.org/10.1556/446.2020.10011

KOZEMPEL, M.F. – ANNOUS, B.A. – COOK, R.D. – SCULLEN, O.J. – WHITING, R.C. (1998): Inactivation of microorganisms with microwaves at reduced temperatures. J Food Prot. 61(5), 582–585. https://doi.org/10.4315/0362-028X-61.5.582

MARTINS, C.P.C. – CAVALCANTI, R.N, – COUTO, S.M. – MORAES, J. – ESMERINO, E.A. – SILVA, M.C. – RAICES, R.S.L. – GUT, J.A.W. – RAMASWAMY, H.S. – TADINI, C.C. – CRUZ, A.G. (2019): Microwave Processing: Current Background and Effects on the Physicochemical and Microbiological Aspects of Dairy Products. Compr Rev Food Sci Food Saf. 18(1), 67–83. https://doi.org/10.1111/1541-4337.12409

MISHRA, V.K. – RAMCHANDRAN, L. (2015): Novel thermal methods in dairy processing. In Datta, N. – Tomasula, P.M. editors. Emerging dairy processing technologies. New Jersey: John Wiley & Sons, Ltd. 33–70.

NASRI, K. – DAGHFOUS, D. – LANDOULSI, A. (2013): Effects of microwave (2.45 GHz) irradiation on some biological characters of Salmonella typhimurium. Comptes Rendus Biologies 336(4), 194–202. https://doi.org/10.1016/j.crvi.2013.04.003

PRIJANA, C. – MULYANA, Y. – HIDAYAT, B. (2016): Roles of Microwave Oven in Preparing Microbiological Growth Media. Althea Medical Journal 3(1).

ROUGIER, C. – PROROT, A. – CHAZAL, P. – LEVEQUE, P. – LEPRAT, P. – SCHOTTEL, J.L. (2014): Thermal and Nonthermal Effects of Discontinuous Microwave Exposure (2.45 Gigahertz) on the Cell Membrane of Escherichia coli. J Applied and Environmental Microbiology 80(16):4832–4841. https://doi.org/10.1128/AEM.00789-14

SALAZAR-GONZÁLEZ, C. – MARTÍN-GONZÁLEZ, M.F.S. – LÓPEZ-MALO, A. – SOSA-MORALES, M.E. (2012): Recent studies related to microwave processing of fluid foods. Food and Bioprocess Technology, 5, 31–46. https://doi.org/10.1007/s11947-011-0639-y

SHAMIS, Y. – TAUBE, A. – MITIK-DINEVA, N. – CROFT, R. – CRAWFORD, R.J. – IVANOVA, E.P. (2011): Specific electromagnetic effects of microwave radiation on Escherichia coli. Appl Environ Microbiol. 77(9), 3017–3022. https://doi.org/10.1128/AEM.01899-10

SINGH, S.S. – MISHRA, S. – PRADHAN, R.C. – VIVEK, K. (2019): Development of a microwave-assisted UV sterilization system for milk. Acta Aliment Hung. 48(1), 9–17. https://doi.org/10.1556/066.2018.0004

TREMONTE, P. – TIPALDI, L – SUCCI, M. – PANNELLA, G. – FALASCA, L. – CAPILONGO, V. – COPPOLA, R. – SORRENTINO, E. (2014): Raw milk from vending machines: Effects of boiling, microwave treatment, and refrigeration on microbiological quality. J Dairy Sci. 97(6), 3314–3320. https://doi.org/10.3168/jds.2013-7744

VADIVAMBAL, R. – JAYAS, D.S. (2010): Non-uniform Temperature Distribution During Microwave Heating of Food Materials—A Review. Food Bioprocess Technol 3, 161–171. https://doi.org/10.1007/s11947-008-0136-0

YE, D. – XU, Y. – ZHANG, H. – FU, T. – JIANG, L. – BAI, Y. (2013): Effects of Low-Dose Microwave on Healing of Fractures with Titanium Alloy Internal Fixation: An Experimental Study in a Rabbit Model. PLoS ONE 8(9), e75756. https://doi.org/10.1371/journal.pone.0075756

Downloads

Published

2023-06-14

Issue

Section

Cikk szövege

How to Cite

The Microbiological Characteristics of the Microwave-treated Samples and the Convection-heat-treated Samples Shows No Deviation in Case of Surface Water Treatment. (2023). Journal of Central European Green Innovation, 11(1), 82-95. https://doi.org/10.33038/jcegi.4570