Strategies for Reducing Arsenic Content in Rice: a review

Authors

  • Tímea Szalóki Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary
  • Árpád Székely Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary
  • Noémi Júlia Valkovszki Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary
  • Ákos Tarnawa Hungarian University of Agriculture and Life Sciences, Institute of Agronomy
  • Mihály Jancsó Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary

DOI:

https://doi.org/10.33038/jcegi.4492

Keywords:

arsenic, varietal variation, water management, mineral nutrients application

Abstract

Arsenic (As) is one of the most toxic metalloid that can enter the food chain through ingestion of As contaminated water or food, posing a serious threat to human health. Among cereals, rice could contain the highest amount of As because of the special growing conditions. Therefore, the importance of the reduction of As concentration in rice is essential. Many studies have been conducted to understand the mechanism of arsenic uptake, accumulation and translocation. The interactions between As and plants are influenced by soil type and other factors such as pH, mineral contents and redox status of the soil, As speciation, and microbial activity. Different nutrients including phosphates, iron, silicon and sulfur effectively regulate the uptake and accumulation of As in different parts of plants. Genetic variation has also effect on As accumulation of rice grain. Water management practices can help to decrease As content of rice plants due to changing the redox status of the soil. Phosphate and silicon transporters can be used by As to enter the rice root cells, therefore detoxification mechanisms of As in rice greatly depend on the activity of these transporters. In this review, we covered the main factors that affect the uptake, accumulation, and translocation of As in different plant organs in rice. We investigated the different soil factors and plant cell transporters needed to understand the mechanisms. This study may be useful for further research to develop strategies that inhibit As entry and transport in plant cells and contribute to safe food production.

Author Biographies

  • Tímea Szalóki, Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary

    research assistant
    szaloki.timea.palma@uni-mate.hu

  • Árpád Székely, Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary

    research assistant
    szekely.arpad@uni-mate.hu

  • Noémi Júlia Valkovszki, Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary

    research fellow
    valkovszki.noemi.julia@uni-mate.hu

  • Ákos Tarnawa, Hungarian University of Agriculture and Life Sciences, Institute of Agronomy

    associate professor
    tarnawa.akos@uni-mate.hu

  • Mihály Jancsó, Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary

    research fellow
    jancso.mihaly@uni-mate.hu

References

ABEDIN, M. J. – COTTER-HOWELLS, J. – MEHARG, A. A. (2002a): Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant and Soil, 240(2), 311–319. https://doi.org/10.1023/A:1015792723288

ABEDIN, M. J. – CRESSER, M. S. – MEHARG, A. A. – FELDMANN, J. – COTTER-HOWELLS, J. (2002b): Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environmental Science & Technology, 36(5), 962–968. https://doi.org/10.1021/es0101678

ABEDIN, M. J. – MEHARG, A. A. (2002): Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.). Plant and Soil, 243(1), 57–66. https://doi.org/10.1023/A:1019918100451

AHMED, Z. U. – PANAULLAH, G. M. – GAUCH, H., MCCOUCH, S. R. – TYAGI, W. – KABIR, M. S. – DUXBURY, J. M. (2011): Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh. Plant and Soil, 338(1), 367–382. https://doi.org/10.1007/s11104-010-0551-7

ALAM, Z. (2005): Accumulation of arsenic in rice plant from arsenic contaminated irrigation water and its effect on nutrient content. 105. http://lib.buet.ac.bd:8080/xmlui/handle/123456789/2424

ARAO, T. – KAWASAKI, A. – BABA, K. – MORI, S. – MATSUMOTO, S. (2009): Effects of Water Management on Cadmium and Arsenic Accumulation and Dimethylarsinic Acid Concentrations in Japanese Rice. Environmental Science & Technology, 43(24), 9361–9367. https://doi.org/10.1021/es9022738

BAKHAT, H. F. – ZIA, Z. – FAHAD, S. – ABBAS, S. – HAMMAD, H. M. – SHAHZAD, A. N. – ABBAS, F. – ALHARBY, H. – SHAHID, M. (2017): Arsenic uptake, accumulation and toxicity in rice plants: Possible remedies for its detoxification: a review. Environmental Science and Pollution Research, 24(10), 9142–9158. https://doi.org/10.1007/s11356-017-8462-2

BOUMAN, B. A. M. – LAMPAYAN, R. M. – TOUNG, T.P. (2007): Water Management in Irrigated Rice: Coping with Water Scarcity. Int. Rice Res. Inst.

CHANDRAKAR, V. – NAITHANI, S. C. – KESHAVKANT, S. (2016): Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: A review. Biologia, 71(4), 367–377. https://doi.org/10.1515/biolog-2016-0052

CHEN, W. – YAO, X. – CAI, K. – CHEN, J. (2011): Silicon Alleviates Drought Stress of Rice Plants by Improving Plant Water Status, Photosynthesis and Mineral Nutrient Absorption. Biological Trace Element Research, 142(1), 67–76. https://doi.org/10.1007/s12011-010-8742-x

CHEN, X. – LI, H. – CHAN, W. F. – WU, C. – WU, F. – WU, S. – WONG, M. H. (2012): Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress. Chemosphere, 89(10), 1248–1254. https://doi.org/10.1016/j.chemosphere.2012.07.054

DIXIT, G. – SINGH, A. P. – KUMAR, A. – MISHRA, S. – DWIVEDI, S. – KUMAR, S. – TRIVEDI, P. K. – PANDEY, V. – TRIPATHI, R. D. (2016): Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiology and Biochemistry, 99, 86–96. https://doi.org/10.1016/j.plaphy.2015.11.005

DUAN, G.-L. – HU, Y. – LIU, W.-J. – KNEER, R. – ZHAO, F.-J. – ZHU, Y.-G. (2011): Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environmental and Experimental Botany, 71(3), 416–421. https://doi.org/10.1016/j.envexpbot.2011.02.016

FAROOQ, M. A. – ISLAM, F. – ALI, B. – NAJEEB, U. – MAO, B. – GILL, R. A. – YAN, G. – SIDDIQUE, K. H. M. – ZHOU, W. (2016): Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environmental and Experimental Botany, 132, 42–52. https://doi.org/10.1016/j.envexpbot.2016.08.004

FODOR, L. – SZEGEDI, L. (2015): Behavior of Heavy Metals in the Soil-Plant System. Journal of Central European Green Innovation.3(1), 13–22. https://doi.org/10.22004/ag.econ.199421

GENG, C.-N. – ZHU, Y.-G. – LIU, W.-J. – SMITH, S. E. (2005): Arsenate uptake and translocation in seedlings of two genotypes of rice is affected by external phosphate concentrations. Aquatic Botany, 83(4), 321–331. https://doi.org/10.1016/j.aquabot.2005.07.003

GENG, C.-N. – ZHU, Y.-G. – TONG, Y.-P. – SMITH, S. E. – SMITH, F. A. (2006): Arsenate (As) uptake by and distribution in two cultivars of winter wheat (Triticum aestivum L.). Chemosphere, 62(4), 608–615. https://doi.org/10.1016/j.chemosphere.2005.05.045

HU, Z.-Y. – ZHU, Y.-G. – LI, M. – ZHANG, L.-G. – CAO, Z.-H. – SMITH, F. A. (2007): Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environmental Pollution, 147(2), 387–393. https://doi.org/10.1016/j.envpol.2006.06.014

KAMIYA, T. – ISLAM, R. – DUAN, G. – URAGUCHI, S. – FUJIWARA, T. (2013): Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Science and Plant Nutrition, 59(4), 580–590. https://doi.org/10.1080/00380768.2013.804390

KÁDÁR, I. – LEHOCZKY, É. (2008): Néhány gyomfaj elemakkumulációja As és Cd által szennyezett talajon. Növénytermelés, 57 (2.), 113–121.

KHAN, M. A. – STROUD, J. L. – ZHU, Y.-G. – MCGRATH, S. P. – ZHAO, F.-J. (2010): Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils. Environmental Science & Technology, 44(22), 8515–8521. https://doi.org/10.1021/es101952f

LEE, C.-H. – WU, C.-H. – SYU, C.-H. – JIANG, P.-Y. – HUANG, C.-C. – LEE, D.-Y. (2016): Effects of phosphorous application on arsenic toxicity to and uptake by rice seedlings in As-contaminated paddy soils. Geoderma, 270, 60–67. https://doi.org/10.1016/j.geoderma.2016.01.003

LI, R. Y. – STROUD, J. L. – MA, J. F. – MCGRATH, S. P. – ZHAO, F. J. (2009a): Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environmental Science & Technology, 43(10), 3778–3783. https://doi.org/10.1021/es803643v

LI, R.-Y. – AGO, Y. – LIU, W.-J. – MITANI, N. – FELDMANN, J. – MCGRATH, S. P. – MA, J. F. – ZHAO, F.-J. (2009b): The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiology, 150(4), 2071–2080. https://doi.org/10.1104/pp.109.140350

LIMMER, M. A. – MANN, J. – AMARAL, D. C. – VARGAS, R. – SEYFFERTH, A. L. (2018): Silicon-rich amendments in rice paddies: Effects on arsenic uptake and biogeochemistry. Science of the Total Environment, 624, 1360–1368. https://doi.org/10.1016/j.scitotenv.2017.12.207

LIU, W.-J. – ZHU, Y.-G. – SMITH, F. A. (2005): Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite. Plant and Soil, 277(1), 127–138. https://doi.org/10.1016/j.scitotenv.2017.12.207

LIU, W.-J. – ZHU, Y.-G. – SMITH, F. A. – SMITH, S. E. (2004): Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture? New Phytologist, 162(2), 481–488. https://doi.org/10.1111/j.1469-8137.2004.01035.x

LU, Y. – DONG, F. – DEACON, C. – CHEN, H. – RAAB, A. – MEHARG, A. A. (2010): Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China. Environmental Pollution, 158(5), 1536–1541. https://doi.org/10.1016/j.envpol.2009.12.022

MA, J. F. (2004): Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50(1), 11–18. https://doi.org/10.1080/00380768.2004.10408447

MA, J. F. – TAMAI, K. – YAMAJI, N. – MITANI, N. – KONISHI, S. – KATSUHARA, M. – ISHIGURO, M. – MURATA, Y. – YANO, M. (2006): A silicon transporter in rice. Nature, 440(7084), Article 7084. https://doi.org/10.1038/nature04590

MA, J. F. – YAMAJI, N. – MITANI, N. – XU, X.-Y. – SU, Y.-H. – MCGRATH, S. P. – ZHAO, F.-J. (2008): Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences, 105(29), 9931–9935. https://doi.org/10.1073/pnas.0802361105

MEHARG, A. A. – ZHAO, F.-J. (2012): Arsenic & Rice. Springer Netherlands. https://doi.org/10.1007/978-94-007-2947-6

NEUPANE, G. – DONAHOE, R. J. (2013): Calcium–phosphate treatment of contaminated soil for arsenic immobilization. Applied Geochemistry, 28, 145–154. https://doi.org/10.1016/j.apgeochem.2012.10.011

NORTON, G. J. – DUAN, G. – DASGUPTA, T. – ISLAM, M. R. – LEI, M. – ZHU, Y. – DEACON, C. M. – MORAN, A. C. – ISLAM, S. – ZHAO, F.-J. – STROUD, J. L. – MCGRATH, S. P. – FELDMANN, J. – PRICE, A. H. – MEHARG, A. A. (2009a): Environmental and genetic control of arsenic accumulation and speciation in rice grain: Comparing a range of common cultivars grown in contaminated sites across Bangladesh, China, and India. Environmental Science & Technology, 43(21), 8381–8386. https://doi.org/10.1021/es901844q

NORTON, G. J. – ISLAM, M. R. – DEACON, C. M. – ZHAO, F.-J. – STROUD, J. L. – MCGRATH, S. P. – ISLAM, S. – JAHIRUDDIN, M. – FELDMANN, J. – PRICE, A. H. (2009b): Identification of low inorganic and total grain arsenic rice cultivars from Bangladesh. Environmental Science & Technology, 43(15), 6070–6075. https://doi.org/10.1021/es901121j

NORTON, G. J. – TRAVIS, A. J. – TALUKDAR, P. – HOSSAIN, M. – ISLAM, M. R. – DOUGLAS, A. – PRICE, A. H. (2019): Genetic loci regulating arsenic content in rice grains when grown flooded or under alternative wetting and drying irrigation. Rice, 12(1), 54. https://doi.org/10.1186/s12284-019-0307-9

PANAULLAH, G. M. – ALAM, T. – HOSSAIN, M. B. – LOEPPERT, R. H. – LAUREN, J. G. – MEISNER, C. A. – AHMED, Z. U. – DUXBURY, J. M. (2009): Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant and Soil, 317(1), 31–39. https://doi.org/10.1007/s11104-008-9786-y

PIGNA, M. – COZZOLINO, V. – VIOLANTE, A. – MEHARG, A. A. (2009): Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations. Water, Air, and Soil Pollution, 197(1), 371–380. https://doi.org/10.1007/s11270-008-9818-5

PILLAI, T. R. – YAN, W. – AGRAMA, H. A. – JAMES, W. D. – IBRAHIM, A. M. H. – MCCLUNG, A. M. – GENTRY, T. J. – LOEPPERT, R. H. (2010): Total Grain-Arsenic and Arsenic-Species Concentrations in Diverse Rice Cultivars under Flooded Conditions. Crop Science, 50(5), 2065–2075. https://doi.org/10.2135/cropsci2009.10.0568

SIGNES-PASTOR, A. – BURLÓ, F. – MITRA, K. – CARBONELL-BARRACHINA, A. A. (2007): Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil. Geoderma, 137(3), 504–510. https://doi.org/10.1016/j.geoderma.2006.10.012

SONG, W.-Y. – YAMAKI, T. – YAMAJI, N. – KO, D. – JUNG, K.-H. – FUJII-KASHINO, M. – AN, G. – MARTINOIA, E. – LEE, Y. – MA, J. F. (2014): A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proceedings of the National Academy of Sciences, 111(44), 15699–15704. https://doi.org/10.1073/pnas.1414968111

SPANU, A. – VALENTE, M. – LANGASCO, I. – LEARDI, R. – ORLANDONI, A. M. – CIULU, M. – DEROMA, M. A. – SPANO, N. – BARRACU, F. – PILO, M. I. – SANNA, G. (2020): Effect of the irrigation method and genotype on the bioaccumulation of toxic and trace elements in rice. Science of The Total Environment, 748, 142484. https://doi.org/10.1016/j.scitotenv.2020.142484

SZALÓKI, T. – SZÉKELY, Á. – VALKOVSZKI, N. J. – TARNAWA, Á. – JANCSÓ, M. (2022): Evaluation of Arsenic Content of Four Temperate Japonica Rice Varieties in a Greenhouse Experiment (S. Phoutthasone & L. Máthé, Eds.; pp. 48–52).

TAKAHASHI, Y. – MINAMIKAWA, R. – HATTORI, K. H. – KURISHIMA, K. – KIHOU, N. – YUITA, K. (2004): Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environmental Science & Technology, 38(4), 1038–1044. https://doi.org/10.1021/es034383n

TRIPATHI, R. D. – SRIVASTAVA, S. – MISHRA, S. – SINGH, N. – TULI, R. – GUPTA, D. K. – MAATHUIS, F. J. M. (2007): Arsenic hazards: Strategies for tolerance and remediation by plants. Trends in Biotechnology, 25(4), 158–165. https://doi.org/10.1016/j.tibtech.2007.02.003

WILLIAMS, P. N. – PRICE, A. H. – RAAB, A. – HOSSAIN, S. A. – FELDMANN, J. – MEHARG, A. A. (2005): Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environmental Science & Technology, 39(15), 5531–5540. https://doi.org/10.1021/es0502324

WU, Z. – REN, H. – MCGRATH, S. P. – WU, P. – ZHAO, F.-J. (2011): Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiology, 157(1), 498–508. https://doi.org/10.1104/pp.111.178921

ZENG, X. –WU, P. – SU, S. – BAI, L. – FENG, Q. (2012): Phosphate has a differential influence on arsenate adsorption by soils with different properties. Plant, Soil and Environment, 58(9), 405–411.

ZHAO, F. J. – MA, J. F. – MEHARG, A. A. – MCGRATH, S. P. (2009) : Arsenic uptake and metabolism in plants. New Phytologist, 181(4), 777–794. https://doi.org/10.1111/j.1469-8137.2008.02716.x

ZHAO, F.-J. – MCGRATH, S. P. – MEHARG, A. A. (2010): Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annual Review of Plant Biology, 61, 535–559. https://doi.org/10.1146/annurev-arplant-042809-112152

Downloads

Published

2023-06-14

Issue

Section

Cikk szövege

How to Cite

Strategies for Reducing Arsenic Content in Rice: a review. (2023). Journal of Central European Green Innovation, 11(1), 55-66. https://doi.org/10.33038/jcegi.4492