Indoor Radon Activity Concentration Survey of Family Houses in Pest County
DOI:
https://doi.org/10.33038/jcegi.3504Keywords:
indoor, pollutant, radon, ventilation, air qualityAbstract
Thanks to the measures taken to prevent the coronavirus epidemic, we have spent more time indoors than before, for example in our homes. It is not only the airborne Covid-19 virus that affects our bodies, but also ionizing radiation from natural sources, higher carbon dioxide concentrations from the breathing of those staying indoors, or pollutants entering the air from our activities (cooking, smoking, etc.). In addition to the way of life of the residents, the structure of the buildings, the built-in boundary structures and the building engineering units (thermal energy production, ventilation) determine the quality of the indoor air.
In December 2019, we started a series of measurements aimed at determining the indoor radon concentration in the eastern part of Pest County, involving 24 family houses in 7 settlements. Our results clearly show the difference between the seasons, but differences can also be found between the architectural and building engineering solutions of the family houses.
References
ABUMURAD, K.M. (2001): Chances of lung cancer due to radon exposure in Al-Mazar Al-Shamali, Jordan. Radiation Measurements, 34(1-6), 537–540. DOI: https://doi.org/10.1016/S1350-4487(01)00223-2
BAUMANN, M. (szerk) (2009): Épületenergetika. Segédlet. PTE Pollack Mihály Műszaki Kar, Pécs. 320p.
BÁNHIDI, L. – KAJTÁR, L. (2000): Komfortelmélet. Műegyetemi Kiadó, Budapest 436p.
BECKER, K. (2003): Health Effects of High Radon Environments in Central Europe: Another Test for the LNT Hypothesis? Nonlinearity in Biology, Toxicology, and Medicine. 1(1), 3–35. DOI: https://doi.org/10.1080/154014203908444
BUTKUS, D. – MORKÜNAS, G. – PILKYTE L.(2005): Ionizing radiation in buildings: Situation and dealing with problems. Journal of Environmental Engineering and Landscape Management, 13(2), 103–107. DOI: https://doi.org/10.3846/16486897.2005.9636853
DARBY, S. – HILL, D. – AUVINEN, A. – BARRIOS-DIOS, J. M. – BAYSSON, H. – BOCHICCHIO, F. – DEO, H. – FALK, R. – FORASTIERE, F. – HAKAMA, M. – HEID, I. – KREIENBROCK, L. – KREUZER, M. – LAGARDE, F. – MAKELAINEN, I. – MUIRGEAD, C. – OBERAIGNER, W. – PERSHAGEN, G. – RUANI-RAVINA, A. – RUOSTEENOJA, E. – ROSARIO, A. S. – TIRMARCHE, M. – TOMASEK, L. – WHITLEY, E. – WICHMANN, H. E. – DOLL, R. (2004): Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. British Medical Journal 330, 223– 226. DOI: https://doi.org/10.1136/bmj.38308.477650.63
CSORDÁS, A. – TÓTH-BODROGI, E. – KOVÁCS, T. (2019): Beltéri radon felmérések a Pannon Egyetemen. Egyetemi Meteorológiai Füzetek, ELTE, 55–59. DOI: https://doi.org/10.31852/EMF.31.2019.055.059
CSORDÁS, A. – SZABÓ, K.Z. – SAS, Z. – KOCSIS, E. – KOVÁCS, T. (2021): Indoor radon levels in Hungarian kindergartens. J Radioanal Nucl Chem 328, 1375–1382. DOI: https://doi.org/10.1007/s10967-020-07501-1
FRONTCZAK, M. – WARGOCKI, P. (2011): Literature survey on how different factors influence human comfort in indoor environments. Building and Environment 46(4), 922–937. DOI: https://doi.org/10.1016/j.buildenv.2010.10.021
GÉCZI, G. – BENÉCS, J. – KRISTÓF, K. – HORVÁTH, M. (2018): High concentrations of radon and carbon dioxide in energy-efficient family houses without heat recovery ventilation. Journal of Environmental Engineering and Landscape Management, 26(1), 64–74. DOI: https://doi.org/10.3846/16486897.2017.1347095
GOYAL, R., KHARE, M., KUMAR, P. (2012): Indoor Air Quality: Current Status, Missing Links and Future Road Map for India. J Civil Environ Eng 2(118). DOI: https://doi.org/10.4172/2165-784X.1000118
HÁMORI, K. – TÓTH, E. – PÁL, L. – KÖTELES, G. – LOSONCI, A. – MINDA, M. (2006a): Evaluation of indoor radon measurements in Hungary. Journal of Environmental Radioactivity, 88, 189–198. DOI: https://doi.org/10.1016/j.jenvrad.2006.02.002
HÁMORI, K. – TÓTH, E. – LOSONCI, A. – MINDA, M. (2006b): Some remarks on the indoor radon distribution in a country. Applied Radiation and Isotopes, 64(8), 859–863. DOI: https://doi.org/10.1016/j.apradiso.2006.02.098
HUSSEIN, Z.A. – JAAFAR, M.S. – ISMAIL, A.H. (2013): Measurements of Indoor Radon-222 Concentration inside Iraqi Kurdistan: Case Study in the Summer Season. J Nucl Med Radiat Ther 4(143). DOI: https://doi.org/10.4172/2155-9619.1000143
ICRP (1991): 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21(1–3).
ICRP (1993): Protection Against Radon-222 at Home and at Work. ICRP Publication 65. Ann. ICRP 23(2).
KATONA, T. – KANYÁR, B. – SOMLAI, J. – MOLNÁR, Á. (2007): Determining 222Rn daughter activities by simultaneous alpha- and beta-counting and modeling. Journal of Radioanalytical and Nuclear Chemistry 272(1), 69–74. DOI: https://doi.org/10.1007/s10967-006-6793-4
KNOLL, G.F. (2010): Radiation Detection and Measurement. John Wiley & Sons, Inc. 4th Edition 860p.
KÖTELES, GY. J., (2007): Radon Risk in Spas? CEJOEM 2007, 3(1), 3–16.
LÁZÁR, I. – TÓTH, E. – KÖTELES, G.J. – PUHÓ, E. – CZEIZEL, A.E. (2005): An inverse association between cancer mortality rate of women and residential radon in 34 Hungarian villages. Journal of Radioanalytical and Nuclear Chemistry 266(1), 43–48. DOI: https://doi.org/10.1007/s10967-005-0866-7
MINDA, M. – TÓTH, GY. – HORVÁTH, I. – BARNET, I. – HÁMORI, K. – TÓTH, E. (2009): Indoor radon mapping and its relation to geology in Hungary. Environmental Geology, 57(3), 601–609. DOI: https://doi.org/10.1007/s00254-008-1329-6
MÜLLEROVÁ, M. – KOZAK, K. – KOVÁCS, T. – SMETANOVÁ, I. CSORDÁS, A. – GRADZIEL, D. – HOLY, K. – MAZUR, J. – MORAVCSIK, A. – NEZNAL, M. – NEZNAL, M. (2016): Indoor radon survey in Visegrad countries. Applied Radiation and Isotopes 110, 124–128. DOI: https://doi.org/10.1016/j.apradiso.2016.01.010
NIKL, I. (1996): The Radon Concentration and Absorbed Dose Rate in Hungarian Dwellings Radiat Prot Dosimetry 67(3), 225-228. DOI: https://doi.org/10.1093/oxfordjournals.rpd.a031821
NIKOLOPOULOS, D. – PETRAKI, E. – TEMENOS, N. – KOTTOU, S. – KOULOUGLIOTIS, D. – YANNAKOPOULOS, P.H. (2014a): Hurst Exponent Analysis of Indoor Radon Profiles of Greek Apartment Dwellings. J Phys Chem Biophys 4(6), 168. DOI: https://doi.org/10.4172/2161-0398.1000168
NIKOLOPOULOS, D. – KOTTOU, S. – LOUIZI, A. – PETRAKI, E. – VOGIANNIS, E. – YANNAKOPOULOS, P.H. (2014b): Factors Affecting Indoor Radon Concentrations of Greek Dwellings through Multivariate Statistics. J Phys Chem Biophys 4, 145. DOI: https://doi.org/10.4172/2161-0398.1000145
SOMLAI, J. – GORJÁNÁCZ, Z. – VÁRHEGYI, A. – KOVÁCS, T. (2006): Radon concentration in houses over a closed Hungarian uranium mine. Science of The Total Environment 367(2–3), 653–665. DOI: https://doi.org/10.1016/j.scitotenv.2006.02.043
SZABÓ, K. ZS. – HORVÁTH, Á. – SZABÓ, CS. (2014a): Geogén radonpotenciál térképezés Pest és Nógrád megye területén. Nukleon VII. 153, 9p.
SZABÓ, K.ZS. – JORDAN, GY. – HORVÁTH, Á. – SZABÓ, CS. (2014b): Mapping the geogenic radon potential: methodology and spatial analysis for Central Hungary. Journal of Environmental Radioactivity, 129, 107–120. DOI: https://doi.org/10.1016/j.jenvrad.2013.12.009
SZABÓ, K.ZS. – JORDAN, GY. – SZABÓ, CS. – HORVÁTH, Á. – HOLM, Ó. – KOCSY, G. – CSIGE, I. – SZABÓ, P. – HOMOKI, ZS. (2014c): Radon and thoron levels, their spatial and seasonal variations in adobe dwellings – a case study at the great Hungarian plain. Isotopes in Environmental and Health Studies, 50(2), 211–225. DOI: https://doi.org/10.1080/10256016.2014.862533
SZERBIN, P. – KÖTELES, GY. – STÚR, D. (1994): Radon Concentrations in Rudas Thermal Bath, Budapest. Radiation Protection Dosimetry, 56(1-4), 319–321.
TÓTH, E. (1992): Radon a magyar falvakban. Fizikai Szemle 2, 44–49.
TÓTH, E. – LÁZÁR, I. – SELMECZI, D. – MARX, G. (1998): Lower cancer risk in medium high radon. Pathology and Oncology Research, 4(2), 125–129. DOI: https://doi.org/10.1007/BF02904706
TÓTH, E., HÁMORI, K. (2005): A lakótéri radonszint eloszlásról Fizikai Szemle 11, 375p.
UNSCEAR (2000): Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation 2000 Report to the General Assembly. 654 p.
VASILYEV, A. – YARMOSHENKO, I. (2016): Effect of energy-efficient measures in building construction on indoor radon in Russia. Radiat Prot Dosimetry, 174(3), 419–422. DOI: https://doi.org/10.1093/rpd/ncw149
ZEEB, H. – SHANNOUN, F. (2009): WHO handbook on indoor radon: a public health herspective. World Health Organization ISBN 978 92 4 154767 3, 94p.
/2015. (XII. 30.) Korm. rendelet: Az ionizáló sugárzás elleni védelemről és a kapcsolódó engedélyezési, jelentési és ellenőrzési rendszerről. Letöltés dátuma: 2022.10.24. forrás: http://www.kozlonyok.hu/nkonline/MKPDF/hiteles/mk15209.pdf
MSZ EN ISO 11665-1:2016 Magyar Szabvány. A környezeti radioaktivitás mérése. Levegő: radon-222, 1. rész: A radon és a rövid felezési idejű bomlástermékek eredete és az ehhez kapcsolódó mérési módszerek.
MSZ EN ISO 11665-1:2016 Magyar Szabvány. A környezeti radioaktivitás mérése. Levegő: radon-222, 5. rész Az aktivitáskoncentráció meghatározása folyamatos mérési módszerrel.
EN ISO 11665-1:2012 Measurement of radioactivity in the environment. Air: radon-222. Part 1: Origins of radon and its short-lived decay products and associated measurement methods.
EN ISO 11665-5:2012 Measurement of radioactivity in the environment. Air: radon-222. Part 5: Continuous measurement metho of the activity concentration.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Journal of Central European Green Innovation
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.