Éghajlatváltozás és szemes cirok (Sorghum bicolor L.) termesztés Magyarországon

Irodalmi áttekintés

Szerzők

Kulcsszavak:

szemes cirok, klímaváltozás, kukorica, vízhiány, alkalmazkodóképesség

Absztrakt

A globális éghajlatváltozás nagymértékben átstrukturálhatja egyes mezőgazdasági területek jellemzőit, melynek következtében a megszokott szántóföldi növények gazdaságos előállítása nehezebbé válhat. Az érintett területeken előremutató lehet olyan növények termesztésében gondolkozni, melyek számára kedvezőbb a megváltozott klíma, ahol a konvencionális kultúrák már nem termeszthetőek gazdaságosan. A szemes cirok (Sorghum bicolor L.) a kukorica kiváló alternatívája lehet az aszállyal sújtott területeken. Ezen szakirodalmi áttekintésben kifejtésre kerülnek a klímaváltozás várható hatásai, továbbá azok megjelenése a magyar kukoricatermesztésben. A cirok származása és termőhelyi igényei mellett áttekintést kaphatunk azon morfológiai és fiziológiai tulajdonságairól is, melyek segítségével elviseli a klímaváltozás negatív hatásait. A cikk fő célja felhívni a figyelmet az éghajlatváltozás révén szárazabbá vált területekben rejlő új lehetőségek kiaknázhatóságára és az agronómiai struktúra átalakításának szükségességére.

Információk a szerzőről

  • Tóth Ariel, MATE Georgikon Campus, Növénytermesztési-tudományok Intézet Agronómia Tanszék

    levelezőszerző
    tothariel96@gmail.com

Hivatkozások

Assefa, Y., Staggenborg, S. A., Prasad, V. P. V. 2010. Grain Sorghum Water Requirement and Responses to Drought Stress: A Review. Crop Management. 9 (1) 1–11. http://dx.doi.org/10.1094/CM-2010-1109-01-RV

Balakrishna, D., Vinodh, R., Madhu, P., Avinash, S., Rajappa, P. V., Venkatesh Bhat, B. 2019. Tissue Culture and Genetic Transformation in Sorghum bicolor. Breeding Sorghum for Diverse End Uses. 115–125. http://dx.doi.org/10.1016/B978-0-08-101879-8.00007-3

Barber, T., Scott, B., Norsworthy, J. 2015. Weed Control in Grain Sorghum. Arkansas Grain Sorghum Production Handbook.

Bartholy, J. 2007. Regional climate change expected in Hungary for 2071-2100. Applied Ecology and Environmental Research. 5 (1) 1–17. https://doi.org/10.15666/aeer/0501_001017

Borsos, J., Pusztai, P., Radics, L., Szemán, L., Tomposné, L. V. 1994. Szántóföldi növénytermesztéstan. Kertészeti és Élelmiszeripari Egyetem, Kertészeti Kar.

Bratek, Z. 2013. 4. Fejezet – Légzés és szénhidrát anyagcsere. In Bratek, Z., Fodor, F., Király, I., Nyitrai, P., Parádi, I., Rácz, I., Rudnóy, Sz., Sárvári, É., Solti, Á., Szigeti, Z., Tamás, L., Fodor, F. (szerk.) A növényi anyagcsere élettana. Eötvös Loránd Tudományegyetem. 131–150.

Ciscar, H. C., Iglesias, A., Feyen, L., Szabó, L., Regemorter, D. V., Amelung, B., Nicholls, R., Watkiss, P., Christensen, O. B., Dankers, R., Garrote, L., Goodess, C. M., Hunt, A., Moreno, A., Richards, J., Soria, A. 2011. Physical and economic consequences of climate change in Europe. Proceedings of the National Academy of Sciences. 108 (7). 2678–2683. http://dx.doi.org/10.1073/pnas.1011612108

Dobos, A., Megyes, A. 2013. Irrigated Farming. University of Debrecen.

Doggett, H. 1988. Sorghum. 2nd Edition. Longman Scientific and Technical, Harlow. 512.

Evans, J. P. 2009. 21st century climate change in the Middle East. Climate Change. 92 (3) 417–432. https://doi.org/10.1007/s10584-008-9438-5

Henry W. B., Krutz, L. J. 2016. Water in Agriculture: Improving Corn Production Practices to Minimize Climate Risk and Optimize Profitability. Current Climate Change Reports. 2 (2) 49–54. https://doi.org/10.1007/s40641-016-0035-9

Illés, B. 2018. Koromszennyezés hatásainak vizsgálata a kukorica víz- és energiaforgalmára és néhány mikroklíma elemére. Doktori (PhD) értekezés. Keszthely: Pannon Egyetem Georgikon Kar Festetics Doktori Iskola.

IPCC (Intergovernmental Panel on Climate Change) 2013. Climate change 2013 - The Physical Science Basis (Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change). Cambridge University Press. https://doi.org/10.1017/CBO9781107415324

IPCC (Intergovernmental Panel on Climate Change) 2021. Climate Change 2021 - The Physical Science Basis (Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change). Cambridge University Press. https://doi.org/10.1017/9781009157896

Jeffree, C. E. 2007. The Fine Structure of the Plant Cuticle. Annual Plant Reviews Volume 23: Biology of the Plant Cuticle. 11–125. http://dx.doi.org/10.1002/9780470988718.ch2

Kaiser, H. M. 1991. Climate Change and Agriculture. Northeastern Journal of Agricultural and Resource Economics. 20 (2). http://dx.doi.org/10.1017/S0899367X0000297X

Kimber, C. T. 2000. Origins of domesticated sorghum and its early diffusion to India and China. In Smith, C. W., Frederiksen, R. A. (eds.), John, W. Sorghum: Origin, history, technology and production. New York. 3–98.

Király, G., 2017. Éghajlatváltozás és alkalmazkodás a mezőgazdaságban. Magyarok a Kárpát-medencében 2.: Tudományos Nemzetközi Konferencia. Szeged. 369–379.

Kumar, S., Milstein, Y., Brami, Y., Elbaum, M., Elbaum, R. 2016. Mechanism of silica deposition in sorghum silica cells. New Phytologist. 213 (2). https://doi.org/10.1111/nph.14173

Ma, J. F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition. 50 (1) 11–18. http://dx.doi.org/10.1080/00380768.2004.10408447

Mika, J. 2002. A globális klímaváltozásról (Egy meteorológus kutató szemszögéből). Fizikai Szemle 52 (9), 258–268.

Ndlovu, E., van Staden, J., Maphosa, M. 2021. Morpho-physiological effects of moisture, heat and combined stresses on Sorghum bicolor [Moench (L.)] and its acclimation mechanisms. Plant Stress. 2. 100018. https://doi.org/10.1016/j.stress.2021.100018

Németh, N. 2017. A Magyar Mezőgazdálkodók Éghajlatváltozással Szembeni Alkalmazkodóképességének Vizsgálata Győr Moson-Sopron és Vas Megyékben. Doktori (PhD) értekezés. Sopron: Soproni Egyetem Lámfalussy Sándor Közgazdaságtudományi Kar, Széchenyi István Gazdálkodás- És Szervezéstudományok Doktori Iskola.

Staggenborg, S. A., Dhuyvetter, K. C., Gordon, W. B. 2008. Grain Sorghum and Corn Comparisons: Yield, Economic, and Environmental Responses. Agronomy Journal. 100 (6). 1600–1604. http://dx.doi.org/10.2134/agronj2008.0129

Tóth, A., Soós, G., Simon, Sz., Simon-Gáspár, B. 2022. Examination of the evapotranspiration dynamics of maize in Thornthwaite-Mather type compensation evapotranspirometer. Acta Agraria Kaposváriensis. 26 (1) 55–69. http://dx.doi.org/10.31914/aak.2851

Vautard, R., Gobiet, A., Sobolowski, S., Kjellström, E., Stegehuis, A., Watkiss, P., Mendlik, T., Landgren, O., Nikulin, G., Teichmann, C., Jacob, D. 2014. The European climate under a 2 °C global warming. Environmental Research Letters. 9 (3) 034006. http://dx.doi.org/10.1088/1748-9326/9/3/034006

Venkateswaran, K., Elangovan, M., Sivaraj, N. 2019. Chapter 2 - Origin, Domestication and Diffusion of Sorghum bicolor. Breeding Sorghum for Diverse End Uses, Woodhead Publishing Series in Food Science, Technology and Nutrition. 15–31. https://doi.org/10.1016/B978-0-08-101879-8.00002-4

Wagaw, K. 2019. Review on Mechanisms of Drought Tolerance in Sorghum (Sorghum bicolor (L.) Moench) Basis and Breeding Methods. Journal of Agricultural Science and Research. 7 (2) 87–99.

Xiao, Y., Li, X., Xu, D., Yao, L., Li, Y., Zhang, X., Li, Z., Xiao, Q., Ni, Y., Guo, Y. 2020. Chemical profiles of cuticular waxes on various organs of Sorghum bicolor and their antifungal activities. Plant Physiology and Biochemistry. 155 596–604. https://doi.org/10.1016/j.plaphy.2020.08.026

Yu, Q., Li, L., Luo, Q., Eamus, D., Xu, S., Chen, C., Wang, E., Liu, J., Nielsen, D. C. 2014. Year patterns of climate impact on wheat yields. International Journal of Climatology. 34 (2) 518–528. http://dx.doi.org/10.1002/joc.3704

Letöltések

Megjelent

2024-06-28