Lítium szermaradvány vizsgálata méhészeti termékekben
Kulcsszavak:
lítium-klorid, méhviasz, méz, szermaradvány, Apis mellifera, Varroa destructorAbsztrakt
A méhcsaládokra a legnagyobb veszélyt a nagy ázsiai méhatka (Varroa destructor) által okozott varroózis jelenti. A varroózis kezelésére jelenleg rendelkezésre álló hatóanyagok rezisztencia és szermaradvány problémákat okozhatnak, hatékonyságuk sem kielégítő minden esetben. A lítium sók, mint atka elleni potenciális hatóanyagok alternatívaként merültek fel 2018-ban. Azonban kevéssé ismert, hogy a lítiumos kezelések milyen mennyiségű szermaradványt hagyhatnak a méhészeti termékekben. A méheket a korábbi vizsgálatokban használt 25 mM lítiumos cukorsziruppal etettük, majd vizsgáltuk a lítium felhalmozódását és kiürülését 22 napon keresztül a méhekben és a méhészeti termékekben. A lítium koncentrációja a méhek teljes szervezetében a kezelést követő 4. napig emelkedett, majd visszaállt a kontroll szintre. A lítium-expozíció csak rövidtávon (<16 nap) volt hatással a fedetlen mézre, míg a fedett (érett) mézben a kísérlet végén is 22,5mg/kg szinten még kimutatható volt. A méhviasz a kísérlet teljes időtartama alatt lítium mentes maradt, ami az engedéllyel rendelkező szintetikus akaricidekkel összevetve előnyösnek mondható. Mindazonáltal, bár ígéretes hatóanyagnak tűnik a lítium, jövőbeni állatorvosi alkalmazásához további kutatásokra van szükség a méz szermaradvány tartalmát illetően.
Hivatkozások
Al Toufailia, H., Francis, L. W. R. 2018. Towards integrated control of varroa: 5) Monitoring Honey bee brood rearing in winter, and the proportion of varroa in small patches of sealed brood cells. J. Apic. Res. 57 (3), 444–451. https://doi.org/10.1080/00218839.2018.1460907
Ayestaran, A., Martin, G.; María, G. d. B. S. 2010. Toxic but Drank: Gustatory aversive compounds induce post ingestional malaise in harnessed honeybees. PLoS ONE. 5, e15000. https://doi.org/10.1371/journal.pone.0015000
Bajuk, B. P., Katarina, B., Tomaž, S., Luka, M., Metka, P., Ocepek, M. Š., Vlasta, J., Ayhan Filazi, D. Š., Silvestra, K. 2017. Coumaphos residues in honey, bee brood, and beeswax after varroa treatment. Apidologie. 48, 588–598. https://doi.org/10.1007/s13592-017-0501-y
Barlow, V. M., Fell, R. D. 2006. Sampling Methods for Varroa Mites on the Domesticated Honeybee; Virginia Cooperative Extension: Virginia, VA, USA, pp. 1–3. Available online: http://hdl.handle.net/10919/50392 (accessed on 19 May 2021).
Bogdanov, S., Jurendic, T., Sieber, R., Gallmann, P. 2008. Honey for Nutrition and Health: A Review. J. Am. Coll. Nutr. 27 (6), 677–689. https://doi.org/10.1080/07315724.2008.10719745
Bogdanov, S., Verena, K., Ueli, B. 2003. Determination of acaricide residues in beeswax: Collaborative study. Apiacta. 38, 235–245.
Carayon, J.-L., Téné, N., Bonnafé, E., Alayrangues, J., Hotier, L., Armengaud, C., Treilhou, M. 2013. Thymol as an alternative to pesticides: Persistence and effects of Apilife Var on the phototactic behavior of the honeybee Apis mellifera. Environ. Sci. Pollut. Res. 21, 4934–4939. https://doi.org/10.1007/s11356-013-2143-6
Castillo-Quan, J. I., Tain, L. S., Kinghorn, K. J., Li, L., Gronke, S., Hinze, Y., Blackwell, K. T., Bjedov, I., Partridge, L. 2019. A triple drug combination targeting components of the nutrient-sensing network maximizes longevity. Proc. Natl. Acad. Sci. 116 (42), 20817–20819. https://doi.org/10.1073/pnas.1913212116
Coffey, M. F., Breen, J. 2016. The efficacy and tolerability of Api-Bioxal® as a winter varroacide in a cool temperate climate. J. Apic. Res. 55 (1), 65–73. https://doi.org/10.1080/00218839.2016.1200866
García, J. C. R., Rodríguez, R. I., Crecente, R. M. P., García, J. B., Martín, S. G., Latorre, C. H. 2006. Preliminary chemometric study on the use of honey as an environmental marker in Galicia (Northwestern Spain). J. Agric. Food Chem. 54 (19), 7206–7212. https://doi.org/10.1021/jf060823t
Genersch, E. 2010. American foulbrood in honeybees and its causative agent, Paenibacillus larvae. J. Invertebr. Pathol. 103 (Suppl.), S10–S19. https://doi.org/10.1016/j.jip.2009.06.015
González-Weller, D., Rubio, C., Gutiérrez Ángel, J., González, G. L., Mesa, J. M. C., Gironés, C. R., Ojeda, A.B., Hardisson, A. 2013. Dietary intake of barium, bismuth, chromium, lithium, and strontium in a Spanish population (Canary Islands, Spain). Food Chem. Toxicol. 62, 856–868. https://doi.org/10.1016/j.fct.2013.10.026
Hernández, O. M., Fraga, J. M. G., Jiménez, A. I., Jiménez, F., Arias, J. J. 2005. Characterization of honey from the Canary Islands: Determination of the Mineral content by atomic absorption spectrophotometry. Food Chem. 93 (3), 449–458. https://doi.org/10.1016/j.foodchem.2004.10.036
Hurst, V., Philip, C. S., Geraldine, A. W. 2014. Toxins induce “Malaise’ behaviour in the Honeybee (Apis Mellifera)”. J. Comp. Physiol. A., 200 881–890. https://doi.org/10.1007/s00359-014-0932-0
Jiménez, J. J., José, L. B., María, J. d. N., María, T. M. 2005. Residues of organic contaminants in beeswax. Eur. J. Lipid Sci. Technol. 107 (12), 896–902. https://doi.org/10.1002/ejlt.200500284
Khalifa, S.A., Elashal, M., Kieliszek, M., Ghazala, N. E., Farag, M. A., Saeed, A., Xiao, J., Zou, X., Khatib, A., Göransson, U., et al. 2020. Recent insights into chemical and pharmacological studies of bee bread. Trends Food Sci. Technol. 97, 300–316. https://doi.org/10.1016/j.tifs.2019.08.021
Kolics, B., Sajtos, Z., Matyas, K., Kolics, É., Taller, J., Baranyai, E. 2019. Lithium Chloride—Hazard or Possibility? In Proceedings of the 46th APIMONDIA—International Apicultural Congress: Montréal, QC, Canada, 8–12 September 2019.
Kolics, É., Kinga, M., János, T., András, S., Balázs, K. 2020. Contact effect contribution to the high efficiency of lithium chloride against the mite parasite of the honey bee. Insects, 11 (6), 333. https://doi.org/10.3390/insects11060333
Kolics, É., Specziár, A., Taller, J., Mátyás, K., Kolics, B. 2021. Lithium chloride outperformed oxalic acid sublimation in a preliminary experiment for varroa mite control in pre-wintering honey bee colonies. Acta Vet. Hung. 68 (4), 370–373. https://doi.org/10.1556/004.2020.00060
Léonard, A., Hantson, P., Gerber, G. 1995. Mutagenicity, carcinogenicity and teratogenicity of lithium compounds. Mutat. Res. Genet. Toxicol. 339 (3), 131–137. https://doi.org/10.1016/0165-1110(95)90007-1
Mozes-Koch, R., Slabezki, Y., Efrat, H., Kalev, H., Kamer, Y., Yakobson, B., Dag, A. 2000. First detection in Israel of fluvalinate resistance in the varroa mite using bioassay and biochemical methods. Exp. Appl. Acarol. 24, 35–43. https://doi.org/10.1023/A:1006379114942
Prešern, J. 2020. Neurostatistical approach to toxicological testing in honeybees. MethodsX. 7, 101077. https://doi.org/10.1016/j.mex.2020.101077
Prešern, J., Kur, U., Bubniˇc, J., Šala, M. 2020. Lithium contamination of honeybee products and its accumulation in brood as a consequence of anti-varroa treatment. Food Chem. 330, 127334. https://doi.org/10.1016/j.foodchem.2020.127334
Rosenkranz, P., Pia, A., Bettina, Z. 2010. Biology and control of varroa destructor. J. Invertebr. Pathol. 103 (Suppl.), S96–S119. https://doi.org/10.1016/j.jip.2009.07.016
Schrauzer, G. N. 2002. Lithium: Occurrence, Dietary intakes, nutritional essentiality. J. Am. Coll. Nutr. 21 (1), 14–21. https://doi.org/10.1080/07315724.2002.10719188
Spivak, M., Reuter, G. 2005. A Sustainable Approach to Controlling Honey Bee Diseases and Varroa Mites, USDA:Washington, DC, USA.m pp. 1–6.
Spreafico, M., Bernardinelli, I., Colombo, M.P. 2001. First detection of strains of Varroa destructor resistant to coumaphos. Results of laboratory tests and field trials. Apidologie. 32 (1), 49–55. https://doi.org/10.1051/apido:2001110
Stanimirovic, Z., Uroš, G., Marko, R., Nevenka, A., Nemanja, J., Branislav, V., Jevrosima, S. 2019. Looking for the causes of and solutions to the issue of honey bee colony losses. Acta Vet. Beogr. 69 (1), 1–31. https://doi.org/10.2478/acve-2019-0001
Voica, C., Roba, C., Iordache, A. M. 2021. Lithium levels in food from the romanian market by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS): A pilot study. Anal. Lett. 54 (1–2), 242–254. https://doi.org/10.1080/00032719.2020.1748642
Whitehead, A. T. 1978. Electrophysiological response of honey bee labial palp contact chemoreceptors to sugars and electrolytes. Physiol. Entomol. 3 (3), 241–248. https://doi.org/10.1111/j.1365-3032.1978.tb00153.x
Wilmart, O., Anne, L., Marie-Louise, S., Wim, R., Bruno, U., Dirk, C. D. G., Walter, S., Philippe, D., Pascal, G., Bach, K. N. 2016. Residues in Beeswax: A health risk for the consumer of honey and beeswax? J. Agric. Food Chem. 64 (44), 8425–8434. https://doi.org/10.1021/acs.jafc.6b02813
Ziegelmann, B., Blumenschein, M., Rein, C., Lang, V., Hannus, S., Rosenkranz, P. 2019. Varroa Treatment of Brood Free Honey Bee Colonies with Lithium Chloride. In Proceedings of the 46th APIMONDIA—International Apicultural Congress, Montréal, QC, Canada, 8–12 September 2019.
Ziegelmann, B., Elisabeth, A., Stefan, H., Michaela, B., Stefan, B., Peter, R. 2018. Lithium chloride effectively kills the honey bee parasite varroa destructor by a systemic mode of action. Sci. Rep. 8, 683. https://doi.org/10.1038/s41598-017-19137-5
Letöltések
Megjelent
Folyóirat szám
Rovat
License
Copyright (c) 2024 Éva Kolics, Zsófi Sajtos, Kinga Mátyás, Kinga Szepesi, Izabella Solti, Gyöngyi Németh, János Taller, Edina Baranyai, András Specziár, Balázs Kolics
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The articel is under the Creative Commons 4.0 standard licenc: CC-BY-NC-ND-4.0. Under the following terms: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material. You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.