Investigation of Lithium Residues in Bee Products
Keywords:
lithium chloride, beeswax, honey, chemical residues, Apis mellifera, Varroa destructorAbstract
The biggest threat to beekeeping is varroosis caused by the mite Varroa destructor. Chemicals available to treat this fatal disease may present problems of resistance or inconsistent efficacy. Recently,lithium chloride has appeared as a potential alternative. To date, the amount of residue lithiumtreatments may leave in honeybee products is poorly understood. Honeybees were fed with 25 mM lithiated sugar syrup, which was used in earlier studies. The accumulation and elimination of the lithium were monitored in bees and their products for 22 days. Lithium concentration increased in the entire body of the bees to day 4 post-treatment and then recovered rapidly to the control level. Lithium exposure was found to affect uncapped honey in the short term (<16 days), but ripe (capped) honey measured at the end of the trial remained affected. On the other hand, lithium treatment left beeswax lithium-free. Based on these data, we propose that comprehensive research on harvested honey is needed to decide on the veterinary use of lithium.
References
Al Toufailia, H., Francis, L. W. R. 2018. Towards integrated control of varroa: 5) Monitoring Honey bee brood rearing in winter, and the proportion of varroa in small patches of sealed brood cells. J. Apic. Res. 57 (3), 444–451. https://doi.org/10.1080/00218839.2018.1460907
Ayestaran, A., Martin, G.; María, G. d. B. S. 2010. Toxic but Drank: Gustatory aversive compounds induce post ingestional malaise in harnessed honeybees. PLoS ONE. 5, e15000. https://doi.org/10.1371/journal.pone.0015000
Bajuk, B. P., Katarina, B., Tomaž, S., Luka, M., Metka, P., Ocepek, M. Š., Vlasta, J., Ayhan Filazi, D. Š., Silvestra, K. 2017. Coumaphos residues in honey, bee brood, and beeswax after varroa treatment. Apidologie. 48, 588–598. https://doi.org/10.1007/s13592-017-0501-y
Barlow, V. M., Fell, R. D. 2006. Sampling Methods for Varroa Mites on the Domesticated Honeybee; Virginia Cooperative Extension: Virginia, VA, USA, pp. 1–3. Available online: http://hdl.handle.net/10919/50392 (accessed on 19 May 2021).
Bogdanov, S., Jurendic, T., Sieber, R., Gallmann, P. 2008. Honey for Nutrition and Health: A Review. J. Am. Coll. Nutr. 27 (6), 677–689. https://doi.org/10.1080/07315724.2008.10719745
Bogdanov, S., Verena, K., Ueli, B. 2003. Determination of acaricide residues in beeswax: Collaborative study. Apiacta. 38, 235–245.
Carayon, J.-L., Téné, N., Bonnafé, E., Alayrangues, J., Hotier, L., Armengaud, C., Treilhou, M. 2013. Thymol as an alternative to pesticides: Persistence and effects of Apilife Var on the phototactic behavior of the honeybee Apis mellifera. Environ. Sci. Pollut. Res. 21, 4934–4939. https://doi.org/10.1007/s11356-013-2143-6
Castillo-Quan, J. I., Tain, L. S., Kinghorn, K. J., Li, L., Gronke, S., Hinze, Y., Blackwell, K. T., Bjedov, I., Partridge, L. 2019. A triple drug combination targeting components of the nutrient-sensing network maximizes longevity. Proc. Natl. Acad. Sci. 116 (42), 20817–20819. https://doi.org/10.1073/pnas.1913212116
Coffey, M. F., Breen, J. 2016. The efficacy and tolerability of Api-Bioxal® as a winter varroacide in a cool temperate climate. J. Apic. Res. 55 (1), 65–73. https://doi.org/10.1080/00218839.2016.1200866
García, J. C. R., Rodríguez, R. I., Crecente, R. M. P., García, J. B., Martín, S. G., Latorre, C. H. 2006. Preliminary chemometric study on the use of honey as an environmental marker in Galicia (Northwestern Spain). J. Agric. Food Chem. 54 (19), 7206–7212. https://doi.org/10.1021/jf060823t
Genersch, E. 2010. American foulbrood in honeybees and its causative agent, Paenibacillus larvae. J. Invertebr. Pathol. 103 (Suppl.), S10–S19. https://doi.org/10.1016/j.jip.2009.06.015
González-Weller, D., Rubio, C., Gutiérrez Ángel, J., González, G. L., Mesa, J. M. C., Gironés, C. R., Ojeda, A.B., Hardisson, A. 2013. Dietary intake of barium, bismuth, chromium, lithium, and strontium in a Spanish population (Canary Islands, Spain). Food Chem. Toxicol. 62, 856–868. https://doi.org/10.1016/j.fct.2013.10.026
Hernández, O. M., Fraga, J. M. G., Jiménez, A. I., Jiménez, F., Arias, J. J. 2005. Characterization of honey from the Canary Islands: Determination of the Mineral content by atomic absorption spectrophotometry. Food Chem. 93 (3), 449–458. https://doi.org/10.1016/j.foodchem.2004.10.036
Hurst, V., Philip, C. S., Geraldine, A. W. 2014. Toxins induce “Malaise’ behaviour in the Honeybee (Apis Mellifera)”. J. Comp. Physiol. A., 200 881–890. https://doi.org/10.1007/s00359-014-0932-0
Jiménez, J. J., José, L. B., María, J. d. N., María, T. M. 2005. Residues of organic contaminants in beeswax. Eur. J. Lipid Sci. Technol. 107 (12), 896–902. https://doi.org/10.1002/ejlt.200500284
Khalifa, S.A., Elashal, M., Kieliszek, M., Ghazala, N. E., Farag, M. A., Saeed, A., Xiao, J., Zou, X., Khatib, A., Göransson, U., et al. 2020. Recent insights into chemical and pharmacological studies of bee bread. Trends Food Sci. Technol. 97, 300–316. https://doi.org/10.1016/j.tifs.2019.08.021
Kolics, B., Sajtos, Z., Matyas, K., Kolics, É., Taller, J., Baranyai, E. 2019. Lithium Chloride—Hazard or Possibility? In Proceedings of the 46th APIMONDIA—International Apicultural Congress: Montréal, QC, Canada, 8–12 September 2019.
Kolics, É., Kinga, M., János, T., András, S., Balázs, K. 2020. Contact effect contribution to the high efficiency of lithium chloride against the mite parasite of the honey bee. Insects, 11 (6), 333. https://doi.org/10.3390/insects11060333
Kolics, É., Specziár, A., Taller, J., Mátyás, K., Kolics, B. 2021. Lithium chloride outperformed oxalic acid sublimation in a preliminary experiment for varroa mite control in pre-wintering honey bee colonies. Acta Vet. Hung. 68 (4), 370–373. https://doi.org/10.1556/004.2020.00060
Léonard, A., Hantson, P., Gerber, G. 1995. Mutagenicity, carcinogenicity and teratogenicity of lithium compounds. Mutat. Res. Genet. Toxicol. 339 (3), 131–137. https://doi.org/10.1016/0165-1110(95)90007-1
Mozes-Koch, R., Slabezki, Y., Efrat, H., Kalev, H., Kamer, Y., Yakobson, B., Dag, A. 2000. First detection in Israel of fluvalinate resistance in the varroa mite using bioassay and biochemical methods. Exp. Appl. Acarol. 24, 35–43. https://doi.org/10.1023/A:1006379114942
Prešern, J. 2020. Neurostatistical approach to toxicological testing in honeybees. MethodsX. 7, 101077. https://doi.org/10.1016/j.mex.2020.101077
Prešern, J., Kur, U., Bubniˇc, J., Šala, M. 2020. Lithium contamination of honeybee products and its accumulation in brood as a consequence of anti-varroa treatment. Food Chem. 330, 127334. https://doi.org/10.1016/j.foodchem.2020.127334
Rosenkranz, P., Pia, A., Bettina, Z. 2010. Biology and control of varroa destructor. J. Invertebr. Pathol. 103 (Suppl.), S96–S119. https://doi.org/10.1016/j.jip.2009.07.016
Schrauzer, G. N. 2002. Lithium: Occurrence, Dietary intakes, nutritional essentiality. J. Am. Coll. Nutr. 21 (1), 14–21. https://doi.org/10.1080/07315724.2002.10719188
Spivak, M., Reuter, G. 2005. A Sustainable Approach to Controlling Honey Bee Diseases and Varroa Mites, USDA:Washington, DC, USA.m pp. 1–6.
Spreafico, M., Bernardinelli, I., Colombo, M.P. 2001. First detection of strains of Varroa destructor resistant to coumaphos. Results of laboratory tests and field trials. Apidologie. 32 (1), 49–55. https://doi.org/10.1051/apido:2001110
Stanimirovic, Z., Uroš, G., Marko, R., Nevenka, A., Nemanja, J., Branislav, V., Jevrosima, S. 2019. Looking for the causes of and solutions to the issue of honey bee colony losses. Acta Vet. Beogr. 69 (1), 1–31. https://doi.org/10.2478/acve-2019-0001
Voica, C., Roba, C., Iordache, A. M. 2021. Lithium levels in food from the romanian market by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS): A pilot study. Anal. Lett. 54 (1–2), 242–254. https://doi.org/10.1080/00032719.2020.1748642
Whitehead, A. T. 1978. Electrophysiological response of honey bee labial palp contact chemoreceptors to sugars and electrolytes. Physiol. Entomol. 3 (3), 241–248. https://doi.org/10.1111/j.1365-3032.1978.tb00153.x
Wilmart, O., Anne, L., Marie-Louise, S., Wim, R., Bruno, U., Dirk, C. D. G., Walter, S., Philippe, D., Pascal, G., Bach, K. N. 2016. Residues in Beeswax: A health risk for the consumer of honey and beeswax? J. Agric. Food Chem. 64 (44), 8425–8434. https://doi.org/10.1021/acs.jafc.6b02813
Ziegelmann, B., Blumenschein, M., Rein, C., Lang, V., Hannus, S., Rosenkranz, P. 2019. Varroa Treatment of Brood Free Honey Bee Colonies with Lithium Chloride. In Proceedings of the 46th APIMONDIA—International Apicultural Congress, Montréal, QC, Canada, 8–12 September 2019.
Ziegelmann, B., Elisabeth, A., Stefan, H., Michaela, B., Stefan, B., Peter, R. 2018. Lithium chloride effectively kills the honey bee parasite varroa destructor by a systemic mode of action. Sci. Rep. 8, 683. https://doi.org/10.1038/s41598-017-19137-5
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Éva Kolics, Zsófi Sajtos, Kinga Mátyás, Kinga Szepesi, Izabella Solti, Gyöngyi Németh, János Taller, Edina Baranyai, András Specziár, Balázs Kolics
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Cikkre a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).