Comparison of Class A pan evaporation with estimated reference evaporation and evapotranspiration
Kulcsszavak:
párolgás, párolgásmérő A kád, úszó levelű hínárAbsztrakt
A vízi növények nagy hatással lehetnek a víz párolgására, ennek ellenére figyelmen kívül hagyják őket a tavak és víztározók párolgásának meghatározásakor. A kísérletben célul tűztük ki egy úszó levelű hínár (Nuohar lutea, sárga vízitök) párolgásra gyakorolt hatásának meghatározását. A mért párolgás adatokat a szakirodalomban alkalmazott párolgási formulákból számolt párolgásértékekkel is összehasonlítottuk (Shuttleworth, FAO56 Penman-Monteith, Hargreaves-Samani and Priestley-Taylor formula). Az eredmények azt mutatták, hogy a sárga vízitök növeli az A kád párolgását. Az empirikus formulák közül a FAO-56 Penman- Monteith referencia párolgás értékei álltak a legközelebb a mért párolgásértékekhez.
Hivatkozások
Allen, R., Pereira, L., Raes, D. and Smith, M. 1998. Crop evapotranspiration: Guidelines for computing crop requirements. Irrigation and Drainage Paper No. 56, FAO, Rome, Italy.
Anda, A. Simon, B., Soós, G., Menyhárt, L., Teixeira, da Silva J.A. and Kucserka, T. 2018. Extending Class A pan evaporation for a shallow lake to simulate the impact of littoral sediment and submerged macrophytes: a case study for Keszthely Bay (Lake Balaton, Hungary). Agricultural and Forest Meteorology. 250–251. 277–289. https://doi.org/10.1016/j.agrformet.2018.01.001
Bal, K., Bouma, T.J., Buis, K., Struyf, E., Schoelynck, J., Backx, H. and Meire, P. 2011. Trade-off between drag reduction and light interception of macrophytes: comparing five aquatic plants with contrasting morphology. Functional Ecology. 25(6). 1197–1205. https://doi.org/10.1111/j.1365-2435.2011.01909.x
Brezny, O., Mehta, I. and Sharmas, R.K. 1973. Studies of evapotranspiration of some aquatic weeds. Weed Science. 21(3). 197–204. https://doi.org/10.1017/S0043174500032112
Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300 (9), D05109.
Doorenbos, J. and Pruitt, W. 1977. Guidelines for predicting crop water requirements. Irrig. Drain. Paper, 24. FAO, Rome, Italy.
Hargreaves, G. and Samani, Z. 1985. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture. 1(2). 96–99. https://doi.org/10.13031/2013.26773.
Heslop-Harrison, Y. 1955. Nuphar Sm. Biological flora of the British Isles. Journal of Ecology. 43(1). 342–364. https://doi.org/10.2307/2257147.
Monteith, J.L. and Unsworth, M.H. 1990. Principles of environmental physics, 2nd edn. Edward Arnold: London; 291 pp.
Penman, H.L. 1948. Natural evaporation from open water, bare soil and grass. Proceeding Royal Society A. 193(1032). 120–145. https://doi.org/10.1098/rspa.1948.0037.
Priestley, C.H.B. and Taylor, R.T. 1972. On the assessment of surface heat flux and evaporation using large scale parameters. Monthly Weather Review. 100(2). 81–92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.
El-Din, S.M.B. and Abdel-Aziz, R.A. 2018. Potential uses of aquatic plants for wastewater treatment. Journal of Experimental and Clinical Microbiology. 2(2). 47–48. Agricultural Microbiology Department, Agricultural and Biological Research. Division, National Research Centre, Dokki, Cairo, Egypt.
Samani, Z. 2000. Estimating solar radiation and evapotranspiration using minimum climatological data. Journal of Irrigation and Drainage Engineering. 126(4). 265–267. https://doi.org/10.1061/(ASCE)0733-9437(2000)126:4(265).
Schoelynck, J., Bal, K., Verschoren, V., Penning, E., Struyf, E., Bouma, T., Meire, D., Meire, P. and Temmerman, S. 2014. Different morphology of Nuphar lutea in two contrasting aquatic environments and its effect on ecosystem engineering. Earth Surface Processes and Landforms. 39(15). 2100–2108. https://doi.org/10.1002/esp.3607.
Shuttleworth, W.J. 1992. Chapter 4 evaporation. In: Maidment, D.R. (Ed.), Handbook of Hydrology. McGraw-Hill Inc., New York.
Snyder, R. and Boyd, C. 1987. Evapotranspiration by Eichhornia crassipes (Mart.) Solms and Typha latifolia L. Aquatic Botany. 27(3). 217–227.
Soloviy, K. and Malovanyy, M. 2019. Freshwater ecosystem macrophytes and microphytes: development, environmental problems, usage as raw material. Review. Environmental Problems. 4(3). 115–124. https://doi.org/10.23939/ep2019.03.115.
Stanhill, G. 2002. Is the class A evaporation pan still the most practical and accurate meteorological method for determining irrigation water requirements? Agricultural and Forest Meteorology. 112(3). 233–236. https://doi.org/10.1016/S0168-1923(02)00132-6.
Thornthwaite, C.W. 1948. An Approach toward a Rational Classification of Climate. Geographical Review. 38(1). 55–94. https://doi.org/10.2307/210739.
Waheeb Youssef, Y. and Khodzinskaya, A. 2019. A Review of Evaporation Reduction Мethods from Water Surfaces. E3S Web of Conferences. 97. 05044.
Xiang, K., Li, Y., Horton, R. and Feng, H. 2020. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review. Agricultural Water Management. 232. 106043. https://doi.org/10.1016/j.agwat.2020.106043
Letöltések
Megjelent
Folyóirat szám
Rovat
License
Copyright (c) 2022 Simon-Gáspár Brigitta, Soós Gábor, Anda Angéla
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The articel is under the Creative Commons 4.0 standard licenc: CC-BY-NC-ND-4.0. Under the following terms: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material. You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.