Environmental concerns and possible strategies to reduce the potential risks of plant molecular farming – Review
Kulcsszavak:
növényi “molekuláris gazdálkodás”, GM növények, környezeti aggályok, környezeti kockázatokat csökkentő stratégiákAbsztrakt
A hasznos rekombináns fehérjék előállítása a genetikai módosítási technológiák kifejlesztése és a transzgénikus növények megjelenése óta folyik. A transzgének áramlása azonban globális problémát jelent a növényi molekuláris gazdálkodásban, mivel rombolhatja a környezetet. Jelen tanulmány célja a növényi molekuláris gazdálkodás potenciális környezeti kockázatainak értékelése másodlagos adatok elemzésével, valamint javaslatot tesz a lehetséges szabályozási stratégiákra is. Irodalmi források szerint a genetikailag módosított szervezeteket használó molekuláris gazdálkodás környezeti kockázatai – nem kizárólag – új vagy erősebb kártétellel rendelkező rovarkártevők és kórokozók megjelenését; a meglévő kártevők kártételeinek súlyosbodását; a nem célzott fajok károsodását; a biotikus közösségek, köztük az agroökoszisztémák megzavarását; a fajok sokféleségének vagy a fajokon belüli genetikai sokféleségnek visszafordíthatatlan változását is előidézhetik. A molekuláris gazdálkodás ezen lehetséges kockázatai veszélyt jelenthetnek az emberek, az állatok és a környezet egészére nézve egyaránt. Fizikai és biológiai elhatárolási megközelítéseket vezettek be az élelmiszer/takarmányláncokban a növényi molekuláris gazdálkodás miatt megjelenő szennyeződések és a környezetszennyezés csökkentése miatt. A fehérjék termelése sejtszuszpenziós tenyésztéssel, kloroplaszt transzformációval, a citoplazmatikus hímsterilitás, a nemi szempontból inkompatibilis növényfajok használata, a terminátor és a szövetspecifikus expressziós technológiák alkalmazása, a laboratóriumi szűrők, és az izolációs távolságok megtartása jelentik a génáramlás megakadályozásának legfontosabb eszközeit. A tanulmány rámutat arra, hogy a molekuláris gazdálkodás alkalmazásainak általános társadalmi elfogadhatósága kevésbé érezhető. Lehetséges megoldás, hogy a molekuláris gazdálkodás környezetre gyakorolt negatív hatásait főként a génáramlás – GM növényből a nem génmódosított növényekbe történő mozgásának – ellenőrzésével lehetne minimalizálni.
Hivatkozások
Ahmad, K. 2014. Plant molecular farming: Strategies, expression and bio safety consideration. Plant Breed. 50. 1–10. https://doi.org/10.17221/187/2013-CJGPB
Baltazar, B., Castro, E., Espinoza, B., de la Fuente, M., Garzon, T., Gonzalze, G. 2015. Pollenmediated gene flow in maize: implications for isolation requirements and coexistence in Mexico, the center of origin of Maize. PLoS ONE. 10(7). https://doi.org/10.1371/journal.pone.0131549
Breyer, D., De Schrijver, A., Goossens , M., Pauwels, K., and Herman, P. 2012. Biosafety of molecular farming in genetically modified plants. In: Molecular farming in plants: Recent Advances and future prospects. 159–274. https://doi.org/10.1007/978-94-007-2217-0_12
Breyer, D., Goossens, M., Herman, P., and Sneyers, M. 2009. Biosafety considerations associated with molecular farming in genetically modified plants. Journal of Medicinal Plants Research. 3(11). 825–838. https://doi.org/10.5897/JMPR.9000311
Cerdeira, A., and Duke, S. 2006. The current status and environmental impacts of glyphosateresistant crops: A review. Journal of Environment Quality. 35(5). 1633–1658. https://doi.org/0.2134/jeq2005.0378
Chase, C. 2006. Genetically engineered cytoplasmic male streility. Trends in Plant Science. 11(1). 7–9. https://doi.org/10.1016/j.tplants.2005.11.003
Clark, M., and Maselko, M. 2020. Transgene Biocontainmane Strategies for Molecular Farming. Frontiers in Plant Science. 11. 210. https://doi.org/10.3389/fpls.2020.00210
Daniell, H. 2006. Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Biotechnology Journal, 1(10), 1071–1079. https://doi.org/10.1002/biot.200600145
Dong, Y., Wang, X., Tang, Q., and Wang, Z. 2015. Theoretical basis of gene splitting technique and its application in the control of transgene flow. Agricultural Biotechnology. 4(5). 1.
EC. 2001. Directive 2001/18/EC of the European Parliament and of the Council of 12 March
on the deliberate release into the enviroment of genetically modified organims and
repealing Council. Commission Declaration (OJL106,17.4.2001), 1–39.
EC. 2009. Directive 2009/41/EC of the European Parliament and of the Council of 6 Many on the contained use of genetically modified mico-organisms. OJL(125,21.52009), 75–97.
Einsiedel, E. and Meldock , J. 2005. A public consultation on plant molecular farming. AgBioForum, 8, 26–32.
EU. 2015. Directive 2015/412 of the European Parliament and the Council of 11 March. Official Journal of the European Union, 68, 1–6.
Fernandez, J., Wechsler, S., Livingston, M., and Mitchell, L. 2014. Genetically engineered crops in the United States. USDA-ERS Economic Research Report Number 162, Available at http://dx.doi.org/10.2139/ssrn.2503388
Fischer, R., Emans , N., Twyman, R., and Schillberg, S. 2004. Molecular farming in plants: Technology Platforms. Encycpedia of Plant and Crop Science. 753-756. https://doi.org/10.1081/E-EPCS 120024676
Fox, J. 2003. Puzzling industry response to ProdiGene fiasco. Nature Biotechnology. 21(1), 3-4. Gaden Organic. (2020). Retrieved 10 31, 2020, from https://www.gardenorganic.org.uk/gmosenvironmental-concerns.
Glasgow, U. 2011. Glasgow Insight into Science and Technology. Retrieved October 15, 2020, from https://the-gist.org/2011/03molecular-farming-%E80%93-how-plants-produce-thevaccines-of-tomorrow/
Godheja, J. 2013. Impact of GMO'S on environment and human health. Recent Research in Science and Technology. 5(5). 26–29.
Gressel, J. 2015. Dealing with transgenes flow of crop protection traits from crops to their relatives. Pest Management Science. 71(5), 658–67. https://doi.org/10.1002/ps.3850.
Grifo, F., Newman, D., Fairfield, A., Bhattacharya, B., and and Grupenhoff, J. 1997. The origins of prescription drugs. Washington D. C: Island Press. pp. 131–163.
Gruber, S., and Husken, A. 2012. Control of cleistogarmy and seed dormancy for biological gene containment in oil seed rape (Brassica napus L.). Plant Gene Containment. 175–198. https://doi.org/10.1002/9781118352670.ch11
Hileman, B. 2003. ProdiGene and StarLink incidents provide ammunition to critics. Chemical & Engineering News. 81(23). 25–33.
Hout, M. 2003. Plant molecular farming: Issues and challenges for Canadian regulators. Option Consommateurs. Canada: Wired News, pp. 1–73.
Howard, J., and Hood, E. 2007. Methods for growing nonfood products in transgenic plants. Crop Science. 47. 1255–1262. https://doi.org/10.2135/cropsci2006.09.0594
Jouzani, G., and Tohidfar, M. 2013. Plant molecular farming: future prospects and biosafety challenges. Biosafety. 2. e136. https://doi.org/10.4172/21670331.1000e136
K, A. 2014. Plant molecular farming: Strategies, expression and bio safety consideration. Czech Journal of Genetics and Plant Breeding. 50(1), 1–10.
Linder, C., Taha, I., Rieseberg, L., Seiler, G., and Snow, A. 1998. Long-term introgression of crop genes into wild sunflower populations. Theoretical and Applied Genetics. 96(3). 339–347. https://doi.org/10.1007/s001220050746
Londo, J., Bollman, M., Sagers, C., Lee, E., and Watrud, L. 2011. Gyphosate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus) to non-transgenic B.napus and B.rapa. New Phytologist. 191(3), 840–849. https://doi.org/10.1111/j.1469-8137.2011.03706.x
Mallory- Smith, C., and Sanchez Olguin, E. 2011. Gene flow from herbicide-resistance crops: it is not just for transgens. Journal of Agricultural and Food Chemistry. 59(11). 5813–5818. https://doi.org/10.1021/jf103389v
Michael, P., Owen, M., and Powles, S. 2010. Herbicide-resistance weed seeds contaminate grain sown in the western Australian Grainbelt. Weed Science. 58(4). 466–472. https://doi.org/10.1614/WS-D-09-00082.1
Murphy, D. J. 2007. Improving Containment strategies in biopharimg. Plant Biotechnology Journal. 5(5). 555–569. https://doi.org/10.1111/j.1467-7652.2007.00278.x
Obembe, O., Popoola, J., Leelavathi, S., and Reddy, S. 2011. Advances in plant molecular farming. Biotechnology Advances. 29(2). 210–222. https://doi.org/10.1016/j.biotechadv.2010.11.004
Oliver, M., Quisenberry, J., Trolinder, N., and Keim, D. 1998. Control of gene expression. United States Patent. 5. 723-765.
Ramessar, K., Sabalza, M., Capell, T., and Christou, P. 2008. Maize Plants: An ideal production plan form for effective and safe molecular pharming. Plant Science. 174(4). 409–419. https://doi.org/10.1016/j.plantsci.2008.02.002
Rigano, M., and Walmsley, A.M. 2005. Expression systems and developments in plant-made vaccines. Immunology and Cell Biology. 83(3). 271-277. https://doi.org/10.1111/j.1440-1711.2005.01336.x
Rizwan, M., Hussain, M., Shimelis, H., Hameed, M., Atif, R., Azhar, M., . . . Asif, M. 2019. Gene flow from major genetically modified crops and strategies for containment and mitigation of transgene escape: A review. Applied Ecology and Environmental Research. 17(5). 11191–11208. https://doi.org/10.15666/aeer/1705_1119111208
Salehi, G. J. 2012. Risk assessment of GM crops: Challenges in regulations and science. Biosafety. 1. e113. http://dx.doi.org/10.4172/2167-0331.1000e113
Schillberg, S., Twyman, R., and Fischer, R. 2005. Opportunities for recombinant antigen and anti-body expression in transgenic plants – technology assessment. Vaccine, 23(15), 1764–1769. https://doi.org/10.1016/j.vaccine.2004.11.002
Snow, A., Andow, D., Gepts, P., Hallerman, E., Power, A., Tiedje, J., and Wolfenbarger, L. 2005. Genetically engineered organisms and the environment: current status and recommendations. Ecological Applications. 15(2). 377–404. https://doi.org/10.1890/04-0539
Spok, A., Twymna, R., Fischer, R., Ma, J., and Sparrow, P. 2008. Evolution of regulatory framework for pharmaceuticals derived from genetically modified plants. Trends in Biotechnology. 26(9). 506–517. https://doi.org/10.1016/j.tibtech.2008.05.007
Tarinejab, A., and Rahimi, E. N. 2015. Molecular farming in plants, plants for the future. Intech Open. https://doi.org/105772/60757
U.S. Department of State Food and Drug administration 2004 Retrieved October 18, 2020, from http://usbiotechreg.nbii.gov
Valkova, R., Apostolova, E., and Naimov, S. 2013. Plant molecular farming: opportunities and challenges. Journal of the Serbian Chemical Society. 78(3). 407–415. https://doi.org/10.2298/JSC121105158V
Vezina, L., Faye, L., Lerouge, P., D'Aoust, M., Marquet-Blouin, E., Burel , C., . . . Gomord, V. 2009. Tansient co-expression for fast and high-yield production of antibodies with human-lie Nglycans in plants. Plant Biotechnology Journal. 7(5), 442–455. https://doi.org/10.1111/j.1467-7652.2009.00414.x
Winslow, L. C., and Kroll, D. J. 1998. Herbs as Medicines. Archives of internal medicine. 158(20). 2192-2199. https://doi.org/10.1001/archinte.158.20.2192
Zavon, J., and Flinn, J. E. 2003. Future of pharming involves look at big picture. Feedstuffs. 75(25).A11.
Internet 1 https://the-gist.org/2011/03molecular-farming-%E80%93-how-plants-produce-thevaccines-of-tomorrow/
Internet 2 https://www.gardenorganic.org.uk/gmos-environmental-concerns
Internet 3 http://usbiotechreg.nbii.gov
Letöltések
Megjelent
Folyóirat szám
Rovat
License
Copyright (c) 2022 Taye Molla Gereme
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The articel is under the Creative Commons 4.0 standard licenc: CC-BY-NC-ND-4.0. Under the following terms: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material. You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.