WDV toleráns árpavonalak előállítása CRISPR/Cas9 rendszerrel
Keywords:
WDV, DNA virus, CRISPR/Cas9, genome editing, virus resistanceAbstract
Plant viruses can cause up to 15% yield loss in agriculture. Nowadays prevention (reducing vector abundance, and choosing the optimal sowing-time) is the only way of antiviral defence. Chemical plant defence has double costs: financial and ecological, so the best solution would be production and breeding of virus resistant crop varieties.
WDV (wheat dwarf virus) - a member of Geminivirideae family– causes significant damages in Hungarian wheat and barley cultivation. Over the past years our research group have made an attempt to produce WDV tolerant barley lines with artificial microRNA (amiRNA) technology. Besides this system’s relative simplicity, it has several drawbacks too: It affects only the transcripts of WDV genome (Kis et al. 2016). In contrast to amiRNA technology, CRISPR/Cas9 (a genome editing tool from bacteria) can directly cut and inactivate the viral DNA. To increase WDV tolerance in barley, we created the WDVGuide4Guard genetic construct. According to our investigations the transgenic barley lines containing this construct are WDV tolerant.
References
Benkovics, A. H., Vida, Gy., Nelson, D. 2010. Partial resistance to wheat dwarf virus in winter wheat cultivars. Plant Pathology. 59. 1144–1151. https://doi.org/10.1111/j.1365-3059.2010.02318.x
Harwood, W. A. 2014. A protocol for high-throughput Agrobacterium-mediated barley transformation. In: Cereal Genomics: Robert, J. H., Furtado, H. Springer Science and Business Media, New York 251–260. https://doi.org/10.1007/978-1-62703-715-0_20
Havelda, Z., Kis, A. 2017. Genomszerkesztés a növényi vírusrezisztencianemesítés szolgálatában. In: Precíziós nemesítés – Kulcs az agrárinnovációhoz. Balázs, E., Dudits, D. Agroinform Budapest 96–105.
Kis, A., Tholt, G., Ivanics, M., Várallyay, É., Jenes, B., Havelda, Z. 2016. Polycistronic artificial miRNA-mediated resistance to wheat dwarf virus in barley is highly efficient at low temperature. Molecular Plant Pathology. 17. 427–437. https://doi.org/10.1111/mpp.12291
Parizipour, M. H., Schubert, J., Behjatnia, S. A. A., Afsharifar, A., Habekuß, A., Wu, B. 2016. Phylogenetic analysis of wheat dwarf virus isolates from Iran. Virus Genes. 53. 266–274. https://doi.org/10.1007/s11262-016-1412-0
Szittya, G., Silhavy, D., Molnar, A., Havelda, Z., Lovas, A., Lakatos, L. Banfalvi, Z., Burgyan, J. 2003. Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. The EMBO Journal. 22. 633–640. https://doi.org/10.1093/emboj/cdg74
Xing, H., Dong, L., Wang, Z., Zhang, H., Han, C., Bing, L. B., Wang, X., Chen, Q. 2014. A CRISPR / Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology. 14. 327. https://doi.org/10.1186/s12870-014-0327-y
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Kis András, Hamar Éva, Tholt Gergely, Taller János, Havelda Zoltán

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Cikkre a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).