Intensive rearing of wels (Silurus glanis L.) using plant protein based feed

Szerzők

  • Havasi Máté University of Pannonia, Georgikon Faculty, Department of Animal Sciences and Animal Husbandry P. O. Box 71. Keszthely 16 Deak F. Str H-8361.
  • Felföldi Zoltán University of Pannonia, Georgikon Faculty, Department of Animal Sciences and Animal Husbandry P. O. Box 71. Keszthely 16 Deak F. Str H-8361.
  • Gorzás Anita University of Pannonia, Georgikon Faculty, Department of Animal Sciences and Animal Husbandry P. O. Box 71. Keszthely 16 Deak F. Str H-8361.
  • Lévai Péter University of Pannonia, Georgikon Faculty, Department of Animal Sciences and Animal Husbandry P. O. Box 71. Keszthely 16 Deak F. Str H-8361.
  • Merth János University of Pannonia, Georgikon Faculty, Department of Animal Sciences and Animal Husbandry P. O. Box 71. Keszthely 16 Deak F. Str H-8361.
  • Bercsényi Miklós University of Pannonia, Georgikon Faculty, Department of Animal Sciences and Animal Husbandry P. O. Box 71. Keszthely 16 Deak F. Str H-8361.

Kulcsszavak:

harcsa, növekedés, növényi fehérje, takarmányhasznosítás

Absztrakt

Az egyre drágább halliszt kiváltásának érdekében, növényi alapú tápokat hasonlítottunk össze kereskedelmi harcsatáppal egy 60 napos kísérlet során. Háromféle takarmányt alkalmaztunk: harcsatáp (W), malactáp (S), illetve hal-kiegészítés malactáp etetése mellett (S + F). A takarmányértékesítés a harcsatápos kezelés esetében 0.88±0.21 volt, míg a malactápos csoport esetében 1.74±0.21, a hal-kiegészítéses csoportnál
1.48 ± 0.23. A specifikus növekedési ráta a harcsatápos csoport esetében nagyobb (SGR átlag: 2.34%), mint a malactápos (1.77%), ill. a hal-kiegészítéses csoport esetében (1.95%). A törzs vágási veszteségei a hal-kiegészítéses csoport esetén a legkisebbek (34.6 ± 2.0%). A harcsatápos csoport esetében a máj relatív mérete (2.8 ± 0.32%) és a hasűri zsír
(4.1 ± 1.0%) szignifikánsan magasabb volt, mint a másik két kezelés esetén.

Információk a szerzőről

  • Havasi Máté, University of Pannonia, Georgikon Faculty, Department of Animal Sciences and Animal Husbandry P. O. Box 71. Keszthely 16 Deak F. Str H-8361.

    levelezőszerző
    havasi.mt@gmail.com 

Hivatkozások

Ai, Q. and Xie, X. 2006. Effects of dietary soybean protein levels on metabolic response of the southern catfish, Silurus meridionalis. Comparative Biochemistry and Physiology. 144. 41–47. https://doi.org/10.1016/j.cbpa.2006.01.030

Ambardekar, A. A., Reigh, R. C. and Williams, M. B. 2009. Absorption of amino acids from intact dietary proteins and purified amino acid supplements follows different time-courses in channel catfish (Ictalurus punctatus). Aquaculture. 291. 179–187. https://doi.org/10.1016/j.aquaculture.2009.02.044

Astles, K. L., Gibbs, P. J., Steffe, A. S. and Green, M. 2009. A qualitative risk-based assessment of impacts on marine habitats and harvested species for a data deficient wild capture fishery. Biological Conservation. 142. 2759–2773. https://doi.org/10.1016/j.biocon.2009.07.006

Caddy, J. F. and Garibaldi, L. 2000. Apparent changes in the trophic composition of world marine harvests: the perspective from the FAO capture database. Ocean & Coastal Management. 43. 615–655. https://doi.org/10.1016/S0964-5691(00)00052-1

Cho, C. Y. and Bureau, D. P. 2001. A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture. Aquaculture Research. 32. 349–360. https://doi.org/10.1046/j.1355-557x.2001.00027.x

Davies, S. J. and Gouveia, A. 2008. Enhancing the nutritional value of pea seed meals (Pisum sativum) by thermal treatment or specific isogenic selection with comparison to soybean meal for African catfish, Clarias gariepinus. Aquaculture. 283. 116–122. https://doi.org/10.1016/j.aquaculture.2008.06.022

Dias, J., Conceicao, L. E. C., Ribeiro, A. R., Borges, P., Valente, L. M. P. and Dinis, M. T. 2009. Practical diet with low fish-derived protein is able to sustain growth performance in gilthead seabream (Sparus aurata) during the grow-out phase. Aquaculture. 293. 255–262. https://doi.org/10.1016/j.aquaculture.2009.04.042

FAO Fisheries and Aquaculture D. 2009. The State of World Fisheries and Aquaculture-2008. http://www.fao.org/docrep/011/i0250e/i0250e00.htm, 2010. 04. 25.

Johnsen, J. P. 2005. The evolution of the "harvest machinery": Why capture capacity has continued to expand in Norwegian fisheries. Marine Policy. 29. 481–493. https://doi.org/10.1016/j.marpol.2004.04.009

Müller, F. 1990. Economical analysis of some superintensive technologies for fish production in Szarvas. Aquacultura Hungarica. 6. 235–246.

Panserat, S., Hortopan, G. A., Plagnes-Juan, E., Kolditz, C., Lansard, M., Skiba-Cassy, S., Esquerré, D., Geurden, I., Médale, F., Kaushik, S. and Corazze, G. 2009. Differential gene expression after total replacement of fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver. Aquaculture. 294. 123–131. https://doi.org/10.1016/j.aquaculture.2009.05.013

Pintér, K. 2010. Magyarország halászata 2009-ben. Halászat. 2. 43–49.

Sánchez-Lozano, N. B., Martínez-Llorens, S., Tomás-Vidal, A. and Cerdá, M. J. 2009. Effect of high-level fishmeal replacement by pea and rice concentrate protein on growth, nutrient utilization and fillet quality in gilthead seabream (Sparus aurata L.). Aquaculture. 298. 83–89. https://doi.org/10.1016/j.aquaculture.2009.09.028

Sealey, W. M., Barrows, F. T., Smith, Ch. E., Overturf, K. and LaPatra, S. E. 2009. Soybean meal level and probiotics in first feeding fry diets alter the ability of rainbow trout Oncorhynchus mykiss to utilize high levels of soybean meal during grow-out. Aquaculture. 293. 195–203. https://doi.org/10.1016/j.aquaculture.2009.04.013

Silva, J. M. G., Espe, M., Conceicao, L. E. C., Dias, J. and Valente, L. M. P. 2009. Senegalese sole juveniles (Solea senegalensis Kaup, 1858) grow equally well on diets devoid of fish meal provided the dietary amino acids are balanced. Aquaculture. 296. 309–317. https://doi.org/10.1016/j.aquaculture.2009.08.031

Sink, T. D., Lochmann, R. T. and Kinsey, N. R. 2010. Growth and survival of channel catfish, Ictalurus punctatus, fry fed diets with 36 or 45% total protein and all plant or animal protein sources. Journal of the World Aquaculture Society. 41. 124–129. https://doi.org/10.1111/j.1749-7345.2009.00319.x

Stickney, R. R. 2010. Cultured Aquatic Species Information Programme, Ictalurus punctatus (Rafinesque, 1818). In: FAO Fisheries and Aquaculture Department, http://www.fao.org/fishery/culturedspecies/ Ictalurus_punctatus/en 2010. 05. 29.

Tacon, A. G. J. and Metian, M. 2008. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture. 285. 146–158. https://doi.org/10.1016/j.aquaculture.2008.08.015

Toko, I. I., Fiogbe, E. D. and Kestemont, P. 2008. Mineral status of African catfish (Clarias gariepinus) fed diets containing graded levels of soybean or cottonseed meals. Aquaculture. 275. 298–305. https://doi.org/10.1016/j.aquaculture.2007.11.038

Webster, C. D., Tiu, L. G., Tidwell, J. H. and Grizzle, J. M. 1997. Growth and body composition of channel catfish (Ictalurus punctatus) fed diets containing various percentages of canola meal. Aquaculture. 150. 103–112. https://doi.org/10.1016/S0044-8486(96)01471-8

Letöltések

Megjelent

2012-03-30

Folyóirat szám

Rovat

Cikkek

Hogyan kell idézni

Havasi, M., Felföldi, Z., Gorzás, A., Lévai, P., Merth, J., & Bercsényi, M. (2012). Intensive rearing of wels (Silurus glanis L.) using plant protein based feed. GEORGIKON FOR AGRICULTURE, 15(1), 19-31. https://journal.uni-mate.hu/index.php/gfa/article/view/6736

Ugyanannak a szerző(k)nek a legtöbbet olvasott cikkei