Integration of status monitoring and reliability analysis in the information systems of power plants

Authors

  • Gábor Szabó Budapest University of Technology and Economics, Department of Transport Automation, H-1111 Budapest, Bertalan L. u. 2. , Budapesti Műszaki és Gazdaságtudományi Egyetem, Közlekedésautomatikai Tanszék, 1111 Budapest, Bertalan L. u. 2.
  • István Varga Systems and Control Laboratory, Computer and Automation Research Institute Hungarian Academy of Sciences, H-1111 Budapest, Kende u. 13–17. , Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutató Intézete, Rendszer- és Irányításelméleti Kutató Labor, 1111 Budapest, Kende u 13–17.
  • Tamás Bartha Systems and Control Laboratory, Computer and Automation Research Institute Hungarian Academy of Sciences, H-1111 Budapest, Kende u. 13–17. , Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutató Intézete, Rendszer- és Irányításelméleti Kutató Labor, 1111 Budapest, Kende u 13–17.

Keywords:

diagnostics, production system, realisation in power plant, fault tree, reliability analysis

Abstract

Among the reasons for the utilisation of computer engineering in power plants is the continuous monitoring of the plant’s state. In the case of subsystems used in the area of critical safety one of the most important aspects of quality is the reliability of the systems. When designing such systems the realisation of safety parameters is essential, therefore these parameters are numerically expressed. Along with the modernisation of the power plants systems, the availability of state information about certain subsystems’ defective status is on the increase. Processing the status information and integrating it into the error-model, a model that follows the system’s actual state, can be obtained. By evaluating the model, the degree of the system’s degradation can be numerically determined. This degradation indicator gives important information about the gravity of the error-event(s) that occur.

Author Biography

  • István Varga, Systems and Control Laboratory, Computer and Automation Research Institute Hungarian Academy of Sciences, H-1111 Budapest, Kende u. 13–17., Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutató Intézete, Rendszer- és Irányításelméleti Kutató Labor, 1111 Budapest, Kende u 13–17.

    corresponding author
    ivarga@sztaki.hu

References

Altmann, J. Pataricza, A. Bartha, T. Urbán, P. (1996). „Constraint Based System-Level Diagnosis of Multiprocessors”, 2nd European Dependable Computing Conference {EDCC-2}, 1150, Springer-Verlag Inc., A. Hlawiczka, J. G. S. Silva, L. Simoncini, (Eds.), 403–425. https://doi.org/10.1007/3-540-61772-8_51

van Benthem, J., „Temporal Logic”, D. M. Gabbay, C. J. Hogger, J. A. Robinson (Eds.) (1995). Handbook of Logic in Artificial Intelligence and Logic Programming, Oxford: Clarendon Press, 241–350. https://doi.org/10.1093/oso/9780198537915.003.0005

Bokor J., Szabó G., Gáspár P., Hetthésy J. (1997). Reliability Analysis of Protection Systems in NPPs Using Fault-Tree Analysis Method. In: Proceedings of the IAEA Symposium on Computerized Reactor Protection and Safety Related Systems in Nuclear Power Plants, Budapest, 91–104.

Fensel, D., Benjamins, R. (1996). "Assumptions in model-based diagnosis", B.R. Gaines, B.R. Musen, M.A. (Eds.) (1996). Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-based Systems workshop, KAW'96, 5. 1–18. Calgary: SRDG Publications, Department of Computer Science, University of Calgary.

Heckerman, D. (1995). “A Tutorial on Learning Bayesian Networks", Technical Report, no. MSR-TR-95-06, Microsoft Research, Advanced Technology Division, March.

Lee, D.W., Gros, L., Tillman, F. A, Lie, C. H. (1985). Fault Tree Analysis, Methods, and Applications – a Review. IEEE Trans. on Reliability 34(3), 194–203. https://doi.org/10.1109/TR.1985.5222114

Peter, J., Lucas, F. (1998). "Analysis of Notions of Diagnosis", Artificial Intelligence, 105(1–2), 295–343. https://doi.org/10.1016/S0004-3702(98)00081-2

Poole D. L. (1988a). „A Logical Framework for Default Reasoning”, Artificial Intelligence, 36(1), 27–47. https://doi.org/10.1016/0004-3702(88)90077-X

Poole D. L. (1988b). „Representing Knowledge for Logic-Based Diagnoses”, Proc. International Conference on Fifth Generation Computing Systems, 1282–1290.

Portinale, L. (1993). „Exploiting T-invariant Analysis in Diagnostic Reasoning on a Petri Net Model”, Application and Theory of Petri Nets, 339–356. https://doi.org/10.1007/3-540-56863-8_55

Portinale, L., Bobbio, A. (1999). „Bayesian Networks for Dependability Analysis: an Application to Digital Control Reliability”, Proceedings of the 15th Int. Conference on Uncertainty in Artificial Intelligence (UAI-99), 551–558.

Published

2004-10-15

How to Cite

Szabó, G., Varga, I., & Bartha, T. (2004). Integration of status monitoring and reliability analysis in the information systems of power plants. Acta Agraria Kaposváriensis, 8(3), 99-115. https://journal.uni-mate.hu/index.php/aak/article/view/1718

Most read articles by the same author(s)