Tej és tejtermékek konjugált linolsav-tartalma III. – A konjugált linolsavak és a tejzsír biológiai hatása; konjugált linolsavak az emberi szervezetben

Irodalmi feldolgozás

Szerzők

  • Csapó János University of Kaposvár, Faculty of Animal Science, Institute of Chemistry, Department of Biochemistry and Food Chemistry, H-7400 Kaposvár, Guba S. u. 40. , Kaposvári Egyetem, Állattudományi Kar, Kémiai Intézet, Biokémiai és Élelmiszerkémiai Tanszék, 7400 Kaposvár, Guba S. u. 40.
  • Vargáné Visi Éva University of Kaposvár, Faculty of Animal Science, Institute of Chemistry, Department of Biochemistry and Food Chemistry, H-7400 Kaposvár, Guba S. u. 40. , Kaposvári Egyetem, Állattudományi Kar, Kémiai Intézet, Biokémiai és Élelmiszerkémiai Tanszék, 7400 Kaposvár, Guba S. u. 40.
  • Csapóné Kiss Zsuzsanna University of Kaposvár, Faculty of Animal Science, Institute of Chemistry, Department of Chemistry, H-7400 Kaposvár, Guba S. u. 40. , Kaposvári Egyetem, Állattudományi Kar, Kémiai Intézet, Kémia Tanszék, 7400 Kaposvár, Guba S. u. 40.
  • Szakály Sándor Hungarian Dairy Research Institute, H-7623 Pécs, Tüzér u. 15. , Magyar Tejgazdasági Kísérleti Intézet, 7623 Pécs, Tüzér u. 15.

Kulcsszavak:

konjugált linolsav, tejzsír, biológiai hatás, karcinogenezis

Absztrakt

Állatkísérletek alapján bizonyítottnak látszik, hogy a takarmányhoz kevert szintetikus KLS gátolja a gyomor és a bőrrák kialakulását egerekben, valamint a bélrák és az emlőrák kifejlődését patkányokban. Bár in vitro kísérletekben a KLS több emberi szövet esetében is jelentősen csökkentette a rákos sejtek proliferációját, nem tudjuk, hogy hatása mennyiben módosul in vivo körülmények között. Az eddigi kutatások alapján megállapítható, hogy a KLS-nek a karcinogenizis folyamatára gyakorolt hatása nagyon összetett és teljességében még nem ismert. Az emberi szervezetben a kedvező élettani hatások kiváltásához szükséges napi KLS-bevitel mennyisége sem ismeri, csupán állatkísérleteken alapuló becsült értékeket ismerünk. Az ember KLS fogyasztása és a rosszindulatú daganatos betegségek kialakulása közötti kapcsolat kimutatása nehézségekbe ütközik, mivel a kísérletben résztvevő önkéntesek táplálkozási szokásait akár évtizedeken keresztül rögzíteni kellene, hogy a KLS-bevitel összevethető legyen a betegségek kialakulásának mértékével. A kísérletben résztvevő önkéntesek életmódjában és környezetében nagy eltérések lehetnek szemben az azonos kísérleti körülmények között tartott állatokkal, s így a zavaró faktorok hatását csak nehezen lehetne csökkenteni vagy kiküszöbölni. Mindezen nehézségek ellenére célszerű lenne az állatkísérletek eredményeinek figyelembevételével kísérleteket folytatni a KLS emberre gyakorolt élettani hatásának megismerésére és a rákellenes hatás igazolására, mielőtt az élelmiszerek KLS-tartalmának növelését tűznénk ki célul.

Információk a szerzőről

  • Csapó János, University of Kaposvár, Faculty of Animal Science, Institute of Chemistry, Department of Biochemistry and Food Chemistry, H-7400 Kaposvár, Guba S. u. 40., Kaposvári Egyetem, Állattudományi Kar, Kémiai Intézet, Biokémiai és Élelmiszerkémiai Tanszék, 7400 Kaposvár, Guba S. u. 40.

    levelezőszerző
    csapo@mail.atk.u-kaposvar.hu

Hivatkozások

Összevont irodalomjegyzék a Tej és tejtermékek konjugált linolsav-tartalma I–III. cikkekhez.

Ackmann, R. G., Eaton, C. A., Sipos, J. C., Crewe, N. F. (1981). Origin of cis-9, trans-11- and trans-11-octadecadienoic acids in the depot fat of primates fed a diet rich lard and corn oil and implications for the human diet. Can. Inst. Food Sci. Technol., 14(2), 103–107. https://doi.org/10.1016/S0315-5463(81)72719-6

Ames, B. N., Gold, L. S., Willett, W. C. (1995). The causes and prevention of cancer. Proc. Natl. Acad. Sci., USA, 92(12), 5258–5265. https://doi.org/10.1073/pnas.92.12.5258

Aneja, R. P., Murthi, T. N. (1991). Beneficial effects of ghee. Nature, 350. 280. https://doi.org/10.1038/350280a0

Banks, W., Clapperton, J. L., Kelly, M. E., Wilson, A. G., Crawford, R. J. M. (1980). The yield, fatty acid composition and physial properties of milk fat obtained by feeding soya oil to dairy cows. J. Sci. Food Agric., 31(4), 368–374. https://doi.org/10.1002/jsfa.2740310407

Bauman, D. E., Barbano, D. M., Dwyer, D. A., Griinari, J. M. (2000). Technical note: production of butter with enhanced conjugated linoleic acid for use in biomedical studies with animal models. J. Dairy Sci., 83(11), 2422–2425. https://doi.org/10.3168/jds.S0022-0302(00)75131-9

Bayard, C.C., Wolff, R.L. (1996). Analysis of trans-18:1 isomer content and profile in edible refine beef tallow. J. Am. Oil Chem. Soc., 73(4), 531–533. https://doi.org/10.1007/BF02523932

Benjamin, H., Storkson, J. M., Liu, W., Pariza, M. W. (1992). The effect of conjugated dienoic derivatives of linoleic acid (CLA) on mouse forestomach protein kinase C (PKC)-like activity. FASEB, J., 6. A1396.

Berdeaux, O., Christie, W. W., Gunstone, F. D., Sebedio, J. L. (1997). Large-scale synthesis of methyl cis-9,trans-11-octadecadienoate from methyl ricinoleate. J. Am. Oil Chem. Soc., 74(8), 1011–1015. https://doi.org/10.1007/s11746-997-0018-z

Bhaskar, A. R., Rizvi, S. S. H., Bertoli, C., Fay, L. B., Hug, B. (1998). A comparison of physical and chemical properties of milk fat fractions obtained by two processing technologies. J. Am. Oil Chem. Soc., 75(10), 1249–1264. https://doi.org/10.1007/s11746-998-0170-0

Booth, R. G., Kon, S. K. (1935). A study of seasonal variation in butter fat. J. Biochem., 29(1), 133–137. https://doi.org/10.1042/bj0290133

Byers, F. M., Schnelling, G. T. (1988). Lipids in ruminant nutrition. The Ruminant Animal: Digestive Physiology and Nutrition. Ed. Church, D.C., Waveland Press, Inc. Prospect Heights, IL. 300 pp.

Britton, M., Fong, C., Wickens, D., Yudkin, J. (1992). Diet as a source of phospholipid esterified 9,11-octadecadienoic acid in humans. Clin. Sci., 83(1), 97–101. https://doi.org/10.1042/cs0830097

Brown, D. W., Moore, W. E. C. (1960). Distribution of Butyrivibrio fibrisolvens in nature. J. Dairy Sci., 43(11), 1570–1574. https://doi.org/10.3168/jds.S0022-0302(60)90377-5

Cant, J. P., Fredeen, A. H., MacIntyre, T., Gunn, T., Crowe, N. (1997). Effect of fish oil and monoensim on milk fat composition in dairy cows. Can. J. Anim. Sci., 77(1), 125–131. https://doi.org/10.4141/A95-125

Caroll, K. K., Khor, H. T. (1971). Effect of level and type of dietary fat on incidence of mammary tumors induced in female Sprague-dawley rats by 7,12-dimethylbenz(a) anthracene. Lipids, 6(6), 415–420. https://doi.org/10.1007/BF02531379

Cawood, P., Wickens, D. G., Iversen, S. A., Braganza, J. M., Dormandy, T. L. (1983). The nature of diene conjugation in human serum, bile and duodendal juice. FEBS Lett. 162(2), 239–243. https://doi.org/10.1016/0014-5793(83)80763-7

Chen, Z. Y., Chan, P. T., Zhang, A. (1997). Reassessment of the antioxidant activity of conjugated linoleic acids. J. Am. Oil Chem. Soc., 74(6), 749–753. https://doi.org/10.1007/s11746-997-0213-y

Chin, S. F., Liu, W., Albright, K., Pariza, M. W. (1992a). Tissue levels of cis-9, trans-11 conjugated dienoic isomer of linoleic acid (CLA) in rats fed linoleic acid (LA). Faseb J., 6. A1396.

Chin, S. F., Liu, W., Storkson, J. M., Ha, Y. L., Pariza, M. W. (1992b). Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognised class of anticarcinogens. J. Food Comp. Anal., 5(3), 185–197. https://doi.org/10.1016/0889-1575(92)90037-K

Christie, W. W., Dobson, G., Gunstone, F. D. (1997). Isomers in commercial samples of conjugated linoleic acid. J. Nutr., 124. 694–701.

Christie, W. W. (1979). The effects of diet and other factors on the lipid composition of ruminant tissues and milk. Prog. Lipis Res., 17(3), 245–277. https://doi.org/10.1016/0079-6832(79)90009-0

Cook, M. E., Miller, C. C., Park, Y., Pariza, M. W. (1993). Immune modulation by altered nutrient metabolism: nutritional control of immune-induced growth pepression. Poultry Sci., 72(7), 1301–1305. https://doi.org/10.3382/ps.0721301

Cope, R. B., Reeve, V. E. (1994). Modification of 7,12-dimethylbenzanthracene (DMBA)/ultraviolet radiation (UVR) co-carcinogenesis, UVR carcinogenesis and cis urocanic acid by dietary fats. Photochem. Photobiol., 59. 24S.

DePeters, E. J., Taylor, S. J., Franke, A. A., Aguirre, A. (1985). Effects of feeding whole cottonseed on composition of milk. J. Dairy Sci., 68(4), 897–902. https://doi.org/10.3168/jds.S0022-0302(85)80907-3

Dhiman, T. R., Anand, G. R., Satter, L. D., Pariza, M. W. (1996). Dietary effects on conjugated linoleic acid content of cow’s milk. 87th AOCS Annul Meeting and Expo, USA.

Dhiman, T. R., Anand, G. R., Satter, L. D., Pariza, M. W. (1999a). Conjugated linoleic acid content of milk from cows fed different diets. J. Dairy Sci., 82(10), 2146–2156. https://doi.org/10.3168/jds.S0022-0302(99)75458-5

Dhiman, T. R., Helmink, E. D., McMahon, D. J., Fife, R. L., Pariza, M. W. (1999b). Conjugated linoleic acid content of milk and cheese from cows fed extruded oilseeds. J. Dairy Sci., 82(2), 412–419. https://doi.org/10.3168/jds.S0022-0302(99)75247-1

Dhiman, T. R., Satter, L. D., Pariza, M. W., Galli, M. P., Albright, K., Tolosa, M. X. (2000). Conjugated linoleic acid (CLA) content of milk from cows offered diets in linoleic acid. J. Dairy Sci., 83(5), 1016–1027. https://doi.org/10.3168/jds.S0022-0302(00)74966-6

Dhiman, T. R., Zanten, K. V., Satter, L. D. (1995). Effect of dietary fat source on fatty acid composition of cow’s milk. J. Sci. Food Agric., 69(1), 101–107. https://doi.org/10.1002/jsfa.2740690116

Doll, R. (1992). The lessons of life: keynote address to the nutrition and cancer conference. Int. J. Cancer, 52. 2024S–2029S.

Doll, R. (1996). Nature and nurture: possibilities for cancer control. Carcinogenesis, 17(2), 177–184. https://doi.org/10.1093/carcin/17.2.177

Donovan, D. C., Schingoethe, D. J., Baer, R. J., Ryali, J., Hippen, A. R., Franklin, S. T. (2000). Influence of dietary fish oil on conjugated linoleic acid and other fatty acids in milk fat from lactating dairy cows. J. Dairy Sci., 83(11), 2620–2628. https://doi.org/10.3168/jds.S0022-0302(00)75155-1

Dormandy, T. L., Wickens, D. G. (1987). The experimental and clinical pathway of diene conjugation. Chem. Phys. Lipids, 45(2–4), 353–364. https://doi.org/10.1016/0009-3084(87)90072-7

Fairbank, J., Hollingwort, A., Griffin, J., Ridgway, E., Wickens, D., Singer, A., Dormandy, T. (1989). Octadeca-9,11-dienoic acid in cervical intraepithelial neoplasia: a colposcopic study. Clinica Chimica Acta, 186(1), 53–58. https://doi.org/10.1016/0009-8981(89)90203-9

Field, C. J., Clandinin, M. T. (1984). Modulation of adipose tissue fat composition by diet: A review. Nutr. Res., 4(4), 743–755. https://doi.org/10.1016/S0271-5317(84)80050-0

Fogerty, A. C., Ford, G. L., Svoronos, D. (1988). Octadeca-9,11-dienoic acid in foodstuffs and in the lipids of human blood and breast milk. Nutr. Rep. Intl., 38. 937–944.

Fritsche, J., Steinhart, H. (1998). Amounts of conjugated linoleic acid (CLA) in German foods and evaluation of daily intake. Z. Lebensm Unters Forsch A, 206. 77–82. https://doi.org/10.1007/s002170050218

Garcia, H. S., Keough, K. J., Arcos, J. A, Jr. Hill, G. C. (2000). Interesterification (acidolysis) of butterfat with conjugated linoleic acid in batch reactor. J. Dairy Sci., 83(3), 371–377. https://doi.org/10.3168/jds.S0022-0302(00)74891-0

Gerson, T., Jihn, A., King, A. S. D. (1985). The effect of dietary starch and fibre on the in vitro rates of lipolysis and hydrogenation by sheep rumen digesta. J. Agric. Sci., 105(1), 27–30. https://doi.org/10.1017/S0021859600055659

Griinari, J., Bauman, T. B. (1999). Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. Advances in Conjugated Linoleic acid Research. Eds. Yuracez, M.W., Mossoba, M.M., Kramer, J.K.G., Pariza, M.W., Nelson, G. AOCS Press, Champaign, IL, 1. 180–198.

Griinari, J., Corl, B. A., Lacy, P. Y., Chouinard, K. V., Nurmela, V., Bauman, D. E. (2000). Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by 9- desaturase. J. Nutr., 130(9), 2285–2291. https://doi.org/10.1093/jn/130.9.2285

Grummer, R. R. (1988). Influence of prilled fat and calcium salt of palm oil fatty acids on ruminal fermentation and nutrient digestibility. J. Dairy Sci., 71(1), 117–123. https://doi.org/10.3168/jds.S0022-0302(88)79532-6

Grummer, R. R. (1991). Effect of feed on the composition of milk fat. J. Dairy Sci., 74(9), 3244–3257. https://doi.org/10.3168/jds.S0022-0302(91)78510-X

Goldin, B. R., Guatieri, L. J., Moore, R. P. (1996). The effect of Lactobacillus GG on the initiation and promotion of DMH-induced intestinal tumors in the rat. Nutr. Cancer, 25(2), 197–204. https://doi.org/10.1080/01635589609514442

Ha, Y. L., Grimm, N. K., Pariza, M. W. (1987). Anticarcinogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis, 8(12), 1881–1887. https://doi.org/10.1093/carcin/8.12.1881

Ha, Y. L., Grimm, N. K., Pariza, M. W. (1989). Newly recognized anticarcinogenic fatty acids: identification and quantification in natural and processed cheeses. J. Agriculture and Food Chemistry, 37(1), 75–81. https://doi.org/10.1021/jf00085a018

Ha, Y. L., Storrkson, J., Pariza, M. W. (1990). Inhibition of benzo(a)prene-inducted mouse forestomach neoplasis by conjugated dienoic derivatives of linoleic acid. Cancer Res., 50. 1097–1101.

Hansen, R. P., Czochanska, Z. (1976). Fatty acid composition of the subcutaneous and perinephric fats of lambs grazed on pasture in New Zealand. J. Sci., 119. 413–419.

Harrison, K., Cawood, P., Iversen, A., Dormandy, T. L. (1985). Diene conjugation patterns in normal human serum. Life Chem. Rep., 3. 41–44.

Harfoot, C. G. (1981). In lipid metabolism in ruminant animals. Ed. Christie, W.W. Pergamon Press, Oxford, 21–55. https://doi.org/10.1016/B978-0-08-023789-3.50006-4

Harfoot, C. G., Hazelwood, G. P. (1988). Lipid metabolism in the rumen. The Rumen Microbiological Ecosystem. Ed. Hobson, P.N., Elsevier Applied Sci. Publishers, London, 285–322.

Heffernan, A. G. A. (1964). Fatty acid composition of adipose tissue in normal and abnormal subjects. Am. J. Cli. Nutr., 15(1), 5–10. https://doi.org/10.1093/ajcn/15.1.5

Holman, R. T., Mahfouz, M. M. (1981). Cis- and trans-octadecenoic acids as precursors of polyunsaturated acids. Prog. Lipid Res., 20. 151–156. https://doi.org/10.1016/0163-7827(81)90028-X

Huang, Y. C., Luedecke, L. O., Shultz, T. D. (1994). Effect of cheddar cheese con- sumption on plasma linoleic acid concentrations in men. Nutr. Res., 14(3), 373–386. https://doi.org/10.1016/S0271-5317(05)80176-9

Ip, C., Briggs, S. P., Haegele, A. D., Thompson, H. J., Storkson, J., Scimeca, J. A. (1996). The efficaty of conjugated linoleic acid in mammary cancer prevention in independent of the level or type of fat in the diet. Carcinogenesis, 17(5), 1045–1050. https://doi.org/10.1093/carcin/17.5.1045

Ip, C., Chin, S. F., Scimeca, J. A., Pariza, M. W. (1991). Mammary cancer prevention by conjugated dienoic derivative of linoleic acid. Cancer Res., 51. 6118–6124.

Ip, C., Singh, M., Thompson, H. J., Scimeca, J. A. (1994). Conjugated linoleic acid suppresses mammary carcinogenesis and proliferative activity of the mammary gland in the rat. Cancer Res., 54. 1212–1215.

Iversen, S. A., Cawood, O. M., Madigan, J., Lawson, A. M., Dormandy, T. L. (1984). Identification of a diene conjugated component of human lipid as octadeca-9,11-dienoic acid. FEBS Lett., 171(2), 320–324. https://doi.org/10.1016/0014-5793(84)80512-8

Iversen, S. A., Cawood, O. M., Dormandy, T. L. (1985). A method for the measurement of linoleic acid, 18:2(9,11) in serum phospholipid, and possible origins. Ann. Clin. Biochem., 22(2), 137–140. https://doi.org/10.1177/000456328502200204

Jahreis, G., Fritsche, J., Steinhart, H. (1997). Conjugated linoleic acid in milk fat: high variation depending on production system. Nutr. Res., 17(9), 1479–1484. https://doi.org/10.1016/S0271-5317(97)00138-3

Jenkins, T. C. (1993). Lipid metabolism in the rumen. J. Dairy Sci., 76(12), 3851–3863. https://doi.org/10.3168/jds.S0022-0302(93)77727-9

Jiang, J. (1998). Conjugated Linoleic Acid. Doctoral thesis.

Jiang, J., Björck, L., Fondén, R. (1998). Production of conjugated linoleic acid by dairy starter cultures. Doctoral thesis.

Jiang, J., Björck, L., Fondén, R., Emanuelson, M. (1996). Occurrence of conjugated cis-9, trans-11-octadecadienoic acid in bovine milk: effects of feed and dietary regimen. J. Dairy Sci., 79(3), 438–445. https://doi.org/10.3168/jds.S0022-0302(96)76383-X

Jiang, J., Kamal-Eldin, A. (1998). Comparing methylene blue-photosensitized oxidation of methyl-conjugated linoleate and methyl linoleate. Doctoral thesis.

Kabara, J.J. (1983). Medium-chain fatty acids and esters. Antimicrobials in Foods. Eds.

Branen, A.L., Davidson, P.M. Marcel Dekker, Inc, New York, 109–133.

Kayahan, M., Tekin, A. (1994). Gida, 19. 147–143.

Kelly, M. L., Bauman, D. E. (1996). Conjugated linoleic acid: a potent anticarcinogen found in milk fat. Cornell Nutrition Conference for Feed manufacturers. Rochester NY. (proceedings) 68–74.

Kelly, M. L., Berry, D. A., Dwyer, J. M., Griinari, J. M., Chouinard, P. Y., Amburgh, M.E.W., Bauman, D.E. (1998). Dietary fatty acid sources affect conjugated linoleic acid concentrations in milk from lactating dairy cows. J. Nutr., 128(5), 881–885. https://doi.org/10.1093/jn/128.5.881

Kemp, P., White, R. W., Lander, D. J. (1975). The hydrogenation of unsaturated fatty acids by five bacterial isolates from sheep rumen, including a new species. J. Gen. Microbiol., 90(1), 100–114. https://doi.org/10.1099/00221287-90-1-100

Kepler, C. R., Hirons, K. P., McNeill, J. J., Tove, S. B. (1966). Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibro fibrisolvens. Journal of Biological Chemistry, 241(6), 1350–1354. https://doi.org/10.1016/S0021-9258(18)96781-5

Kepler, C. R., Tove, S. B. (1967a). Biohydrogenation of unsaturated fatty acids. J. Biol. Chem., 241. 1351–1354.

Kepler, C. R., Tove, S. B. (1967b). Biohydrogenation of unsaturated fatty acids. J. Biol. Chem., 242(24), 5686. https://doi.org/10.1016/S0021-9258(18)99355-5

Kepler, C. R., Tucker, W. P., Tove, S. B. (1971). Biohydrogenation of unsaturated fatty acids. J. Biol. Chem., 246(9), 2765–2771. https://doi.org/10.1016/S0021-9258(18)62250-1

Klurfeld, D. M., Weber, M. M., Kritchevsky, D. (1983a). Inhibition of chemically induced colon or breast cancer by milk fat and milk solids. Fed. Proc., 42. 802.

Klurfeld, D. M., Weber, M. M., Kritchevsky, D. (1983b). Comparison of semipurified and skim milk protein containing diets on DSMBA-induced breast cancer in rats. Kiel. Milchwirtshaft, 35. 421–422.

Lavillonniére, F., Martin, J. C., Bougnoux, P., Sébédio, J. L. (1998). Analysis of conjugated linoleic acid isomers and content in french cheeses. Am. Oil Chem. Soc., 75(3), 343–352. https://doi.org/10.1007/s11746-998-0051-6

Lee, K. N., Kritchevsky, D., Pariza, M. W. (1994): Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis, 108(1), 19–25. https://doi.org/10.1016/0021-9150(94)90034-5

Liew, C., Schut, H. A. J., Pariza, M. W., Dashwood, R. H. (1995). Protection of conjugated linoleic acids against 2-amino-3-methylimidazol(4,5-f)quinoline induced colon carcinogenesis in the F344 rat: a study of inhibitory mechanisms. Carcinogenesis, 16(12), 3037–3043. https://doi.org/10.1093/carcin/16.12.3037

Lin, H., Boylston, T. D., Chang, M. J., Luedecke, L. O., Schultz, T. D. (1995). Survey of the conjugated linoleic acid contents of dairy products. J. Dairy Sci., 78(11), 2358–2365. https://doi.org/10.3168/jds.S0022-0302(95)76863-1

McIntosh, G. H., Regeter, G. O., Le Leu, R. K., Royle, P. J., Smithers, G. W. (1995). Dairy proteins protect aganist dimethylhydrazine-inducted intestinal cancer in rats. J. Nutr., 125(4), 809–816. https://doi.org/10.1093/jn/125.4.809

Miller, C. C., Park, Y., Pariza, M. W., Cook, M. E. (1994). Feeding conjugated linoleic acid to animals partially overcomes catabolic responses due to endotoxin injection. Biochem. Biophys. Res. Commún., 198(3), 1107–1112. https://doi.org/10.1006/bbrc.1994.1157

Mohamed, O. E., Satter, L. D., Grummer, R. R., Ehle, F. R. (1988). Influence of dietary cottonseed and soya bean on milk production and composition. J. Dairy Sci., 71(10), 2677–2688. https://doi.org/10.3168/jds.S0022-0302(88)79861-6

Mossoba, M. M., McDonald, R. E., Amstrong, D. J., Page, S. W. (1991). J. Chromatogr., Sci., 29(8), 324–330. https://doi.org/10.1093/chromsci/29.8.324

Newmark, H. L., Lipkin, M., (1992). Calcium, vitamin D, and colon cancer. Cancer Res., 52. 2067S–2070S.

Nicolosi, R. J., Laitinen, L. (1996). Dietary conjugated linoleic acid reduces aortic fatty streak formation greater than linoleic acid in hypercholesterolemic hamsters. Faseb J., 10. 2751.

Padley, F. B., Gunstone, F. D., Harwood, J. L. (1994). Occurrence and characteristic of oils and fats. The lipid Handbook. (Eds. Gunston, F.D., Harwodd, J.L., Padley, F.B.) Chapman & Hall, London, 51 pp.

Palmquist, D. L., Schanbacher, F. L. (1991). Dietary fat composition influences fatty acid composition of milk fat globule membrane in lactating cows. Lipids, 26(9), 718–722. https://doi.org/10.1007/BF02535620

Pariza, M. W., Hargraves, W. A. (1985). A beef-derived mutagenesis modulator inhibits initiation of mouse epidermal tumours by 7,12 dimethylbenz(a)anthracene. Carcinogenesis, 6(4), 591–593. https://doi.org/10.1093/carcin/6.4.591

Park, Y., Albright, K. J., Liu, W., Storkson, J. M., Cook, M. E., Pariza, M. W. (1997). Effect of conjugated linoleic acid on body composition in mice. Lipid, 32(8), 853–858. https://doi.org/10.1007/s11745-997-0109-x

Parodi, P. W. (1977). Conjugated octadecadienoic acids of milk fat. J. Dairy Sci., 60(10), 1550–1553. https://doi.org/10.3168/jds.S0022-0302(77)84068-X

Parodi, P. W. (1994). Conjugated linoleic acid: An anticarcinogenetic fatty acid present in milk fat. Journal of Dairy Techology, 49. 93–97.

Parodi, P. W. (1997). Cow’s milk fat components as potential anticarcinogenic agents. Am. Soc. for Nut. Sci., 127(6), 1055–1060. https://doi.org/10.1093/jn/127.6.1055

Polan, C. E., McNeill, J. J., Tove, S. B. (1964). Biohydrogenation of unsaturated fatty acids by rumen bacteria. J. Bacteriol., 88(4), 1056. https://doi.org/10.1128/jb.88.4.1056-1064.1964

Pollard, M. R., Gunstone, F. D., James, A. T., Morris, L. J. (1980). Desaturation of positional and geometric isomers of monoenoic fatty acids by microsomal preparations from rat liver. Lipids, 15(5), 306–314. https://doi.org/10.1007/BF02533545

Precht, D., Molkentin, J. (2000). Frequency distributions of conjugated linoleic acid and trans fatty acid contents in European bovine milk fats. Milchwissenschaft, 55. 12. 687–691.

Reddy, B. S. (1992). Dietary fat and colon cancer: animal model studies. Lipids, 27(10), 807–813. https://doi.org/10.1007/BF02535855

Reeve, V. E., Matheson, M., Greenoak, G. E., Canfield, P. J., Boehm-Wilcox, C., Gallagher, C. H. (1988). Effect of dietary lipid on UV light carcinogenesis in the hairless mouse. Photochem. Photobiol., 48(5), 689–696. https://doi.org/10.1111/j.1751-1097.1988.tb02882.x

Riel, R. R. (1963). Physico-chemical characteristics of Canadian milk fat. Unsaturated fatty acids. J. Dairy Sci., 46(2), 102–106. https://doi.org/10.3168/jds.S0022-0302(63)88981-X

Rizvi, S. S. H., Bhaskar, A. R. (1995). Supercritical fluid processing of milk fat: fractionation, scale-up, and economics. Food Technol., 49. 90–98.

Romero, K. P., Rizvi, S. S. H., Kelly, M. L., Bauman, D. E. (2000). Short communication: concentration of conjugated linoleic acid from milk fat with a continuous supercritical fluid processing system. J. Dairy Sci., 83(1), 20–22. https://doi.org/10.3168/jds.S0022-0302(00)74849-1

Romo, G. A., Casper, D. P., Erdman, R. A., Teter, B. B. (1996). Abomasalinfusion of cis or trans fatty acid isomers and energy metabolism of lactating dairy cows. J. Dairy Sci., 79(11), 1005–1015. https://doi.org/10.3168/jds.S0022-0302(96)76573-6

Salminen, I., Mutanen, M., Jauhiainen, M., Aro, A. (1998). Dietary trans fatty acids increase conjugated linoleic acid levels in human serum. Nutr. Biochem., 9(2), 93–98. https://doi.org/10.1016/S0955-2863(97)00173-3

Schingothe, D. J., Casper, D. P. (1991). Total lactation response to added fat during early lactation. J. Dairy Sci., 74(8), 2617–2622. https://doi.org/10.3168/jds.S0022-0302(91)78440-3

Schonberg, S., Krokan, H. E. (1995). The inhibitory effect of conjugated dienoic derivatives (CLA) of linoleic acid on the growth of human tumor cell lines is in part due to increased lipid peroxidation. Anticancer Res., 15. 1241–1246.

Shantha, N. C., Crum, A. D., Decker, E. A. (1994). Evaluation of conjugated linoleic acid concentrations in cooked beef. J. Agric. Food Chem., 42(8), 1757–1760. https://doi.org/10.1021/jf00044a035

Shantha, N. C., Deckeer, E. A. (1992). Conjugated linoleic acid concentrations in processed cheese containing hydrogen donors, iron and dairy-based additives. Food Chem., 47(3), 257–261. https://doi.org/10.1016/0308-8146(93)90158-C

Shantha, N. C., Deckeer, E. A., Ustunol, Z. (1992). Conjugated linoleic acid concentration in processed cheese. J. Am. Oil Chem. Soc., 69(5), 425–428. https://doi.org/10.1007/BF02540942

Shantha, N. C., Ram, L. N., O’Leary, J., Hicks, C. L., Decker, E. A. (1995). Conjugated linoleic acid concentrations in dairy products as affected by processing and storage. J. Food Sci., 60(4), 695–697. https://doi.org/10.1111/j.1365-2621.1995.tb06208.x

Shorland, F. B., Weenink, R. O., Johns, A. T. (1955). Effect of the rumen on the dietary fat. Nature, 175. 1129–1130. https://doi.org/10.1038/1751129a0

Schultz, T. D., Chew, B. P., Seaman, W. R., Luedecke, L. O. (1992). Inhibitory effect of conjugated dienoic derivatives of linoleic acid and ß-carotene on the in vitro growth of human cancer cells. Cancer Lett., 63(2), 125–133. https://doi.org/10.1016/0304-3835(92)90062-Z

Spitzer, V., Marx, F., Maia, J. G. S., Pfeilsticker, K. (1991a). Identification of conjugated fatty acids in the seed oil of Acioa edulis (Prance) syn. Couepia edulis (Chrysobalanaceae). J. Am. Oil Chem. Soc., 68(3), 183–189. https://doi.org/10.1007/BF02657766

Spitzer, V., Marx, F., Maia, J.G.S., Pfeilsticker, K. (1991b). Occurrence of conjugated fatty acids in the seed oil ofcouepia longipendula (chrysobalanaceae). J. Am. Oil Chem. Soc., 68. 440–442. https://doi.org/10.1007/BF02663764

Stanton, C., Lawless, F., Kjellmer, G., Harrington, D., Devery, R., Connolly, J. F., Murphy, J. (1997). Dietary influences on bovine milk cis-9,trans-11-conjugated linoleic acid content. J. Food Sci., 62(5), 1083–1086. https://doi.org/10.1111/j.1365-2621.1997.tb15043.x

Steward, L. C., Carlsson, D. J., Wiles, D. M., Scaino, J. C. (1983). Triplet quenching by tert-butyl hydroperoxide. J. Am. Chem. Soc., 105(11), 3605–3609. https://doi.org/10.1021/ja00349a042

Sugano, M., Tsujita, A., Yamasaki, M., Yamada, K., Ikeda, I., Kritchevsky, D. (1997). Lymphatic recovery, tissue distribution and metabolic effects of conjugated linoleic acid in rats. J. Nutr. Biochem., 8(1), 38–43. https://doi.org/10.1016/S0955-2863(96)00150-7

Tanielian, C., Mechin, R., Shakirullah, M. (1992). Origin of dye bleaching and polymer degradation in the methylene bluesensitized photooxygenation of polybutadiene. J. Photochem. Photobiol. A. Chem., 64(2), 191–199. https://doi.org/10.1016/1010-6030(92)85106-5

Yanagi, S., Yamashita, M., Sakamoto, M., Kumazawa, K., Imai, S. (1989). Conparative effects of butter, margarine, safflower oil and dextrin on mammal tumorgenesis in mice and rats. The Pharmacological Effects of Lipids. The Role of Lipids in Cancer research. Ed. Kabara, J.J. Lauricidin Inc., Galena, IL. 159–169.

Yanagi, S., Yamashita, M., Tsuyuki, M., Morimoto, J., Haga, S., Imai, S. (1992). Milk cream does not enhance 2,7-dimethylbenz(a)anthracene-induced mammary tumorgenesis. Cancer Lett., 61(2), 141–145. https://doi.org/10.1016/0304-3835(92)90172-R

Yanagi, S., Yamashita, M., Ogoshi, K., Imai, S. (1994). Comparative effect of milk, yoghurt, butter and margarine on mammary tumorgenesis induced 7,12- dimethylbenz(a) anthracene in rats. Cancer Detect. Prov., 18. 415–423.

Van den Berg, J. J. M., Cook, N. E., Tribble, D. L. (1995). Reinvestigation of the antioxidant properties of conjugated linoleic acid. Lipids, 30(7), 599–605. https://doi.org/10.1007/BF02536996

Van Staveren, W. A., Deurenberg, P., Katan, M. B., Burema, J., De Groot, L. C. G. M., Hoffmans, M. D. A. F. (1986). Validity of the fatty acid composition of subcutaneous fat tissue microbiopsies as an estimate of long-term average fatty acid composition of the diet of separate individuals. Am. J. Epidemiol., 123(3), 455–463. https://doi.org/10.1093/oxfordjournals.aje.a114260

Werner, S. A., Luedecke, L. O., Schultz, T. D. (1992). Determination of conjugated linoleic acid content and isomer distribution in three cheddar-type cheeses: effects of cheese cultures, proceeding and aging. J. Agric. Food Chem., 40(10), 1817–1821. https://doi.org/10.1021/jf00022a017

Welsch, C. W. (1992). Relationship between dietary fat and experimental mammary tumorgenesis a review: and critique. Cancer Res., 52. 2040S–2048S.

Wolff, R. L., Bayard, C. C., Fabien, R. J. (1995). Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis ontrans-18:1 acids. Application to the study of seasonal variations in french butters. J. Am. Oil. Chem. Soc., 72(12), 1471–1482. https://doi.org/10.1007/BF02577840

Zu, H. X., Schut, H. A. J. (1992). Inhibition of 2-amino-3-metylimidazo-4,5-quinoline-DNA adduct formation in CDF1 mice by heat-altered derivatives linoleic acid. Food Chem. Toxicol., 30(1), 9–16. https://doi.org/10.1016/0278-6915(92)90131-4

Letöltések

Megjelent

2001-12-15

Hogyan kell idézni

Csapó, J., Vargáné Visi, Éva, Csapóné Kiss, Z., & Szakály, S. (2001). Tej és tejtermékek konjugált linolsav-tartalma III. – A konjugált linolsavak és a tejzsír biológiai hatása; konjugált linolsavak az emberi szervezetben: Irodalmi feldolgozás. Acta Agraria Kaposváriensis, 5(4), 23-38. https://journal.uni-mate.hu/index.php/aak/article/view/1592

Ugyanannak a szerző(k)nek a legtöbbet olvasott cikkei

<< < 1 2 3 4 5 6