The role of sprouts in human nutrition

A review

Authors

  • Melinda Márton Sapientia Hungarian University of Transylvania, Csíkszereda Campus, RO-530104 Csíkszereda, Szabadság tér 1.
  • János Csapó Kaposvár University, H-7400 Kaposvár, Guba S. u. 40.

Keywords:

sprouts, chemical changes during germination, fat content, fatty acid composition, protein content, amino acid composition, carbohydrate content, ant nutritive materials, ant carcinogen effect

Abstract

Based on the data of the literature it can be stated that the original composition of the seeds essentially changes during germination. The quantity of the protein fractions changes, the proportion of the nitrogen containing fractions shifts towards the smaller protein fractions, oligopeptides and free amino acids. Beyond this changes the quantity of the amino acids (some of them increase, others decrease or do not alter) during germination, and nonprotein amino acids also are produced. In consequence of these changes, the biological value of the sprout protein increase, and greater digestibility was established in animal experiments. The composition of the triglycerides also changes, owing to hydrolysis free fatty acids originate, that can be considered as a certain kind of predigestion. Generally, the ratio of the saturated fatty acids increases compared to unsaturated fatty acids, and the ratio within the unsaturated fatty acids shifts to the essential linoleic acid. The quantity of the antinutritive materials decreases, and the utilization of the macro- and micro elements is increased owing to germination. Furthermore the sprouts contain many such materials (sulphoraphane, sulphoraphene, isothiocianates, glucosinolates, enzymes, antioxidants, vitamins) that are proved to be effective in the prevention of cancer, or in the therapy against cancer.

Author Biography

  • Melinda Márton, Sapientia Hungarian University of Transylvania, Csíkszereda Campus, RO-530104 Csíkszereda, Szabadság tér 1.

    corresponding author
    martonmelinda@sapientia.siculorum.ro

References

AACR. (2005). Broccoli sprouts, cabbage, Ginkgo biloba and garlic: a grocery list for cancer prevention. American Association for Cancer Research. Public & Media: News. http://www.aacr.org/default.aspx?p=1275&d=553 (Access on June 14, 2006)

Alarcón de la Lastra, C. A., Villegas, I. (2005). Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Molecular Nutrition and Food Research, 49(5), 405–430. https://doi.org/10.1002/mnfr.200500022

Ambrosone, C. B., McCann, S. E, Freudenheim, J. L, Marshall, J. R., Zhang, Y., Shields, P. G. (2004). Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. Journal of Nutrition, 134(5), 1134–1138. https://doi.org/10.1093/jn/134.5.1134

Amici, M., Bonfili, L., Spina, M., Cecarini, V., Calzuola, I., Marsili, V., Angeletti, M., Fioretti, E., Tacconi, R., Gianfranceschi, G. L., Eleuteri, A. M. (2008). Wheat sprout extract induces changes on 20S proteasomes functionality. Biochimie, 90(5), 790–801. https://doi.org/10.1016/j.biochi.2007.12.001

Barillari, J., Canistro, D., Paolini, M., Ferroni, F., Pedulli, G. F., Iori, P., Valgimigli, L. (2005a). Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite container in rocket (Eruca sativa Mill.) seeds and sprouts. Journal of Agriculture and Food Chemistry, 53(7), 2475–2482. https://doi.org/10.1021/jf047945a

Barillari, J., Cervellati, R. Paolini, M., Tatibouët, A., Rollin, P., Iori, R. (2005b). Isolation of 4-methylthyo-3-butenyl glucosinolate from Raphanus sativus sprouts (Kaiware-daikon) and its redow properties. Journal of Agriculture and Food Chemistry, 53(26), 9890–9896. https://doi.org/10.1021/jf051465h

Bellostas, N., Kachlicki, P., Sørensen, H., Sørensen, J. C. (2007). Glucosinolate profiling of seeds and sprouts of B. Oleracea varieties used for food. Scientia Horticulturae, 114(4), 234–242. https://doi.org/10.1016/j.scienta.2007.06.015

Bennett, R. N., Rosa, E. A. S., Mellon, F. A., Kroon, P. A. (2006). Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad (rocket). Diplotaxes erucoides (Wall rocket), Diplotaxis tenuifolia (wild rocket) and Bunias orientalis (Turkish rocket). Journal of Agriculture and Food Chemistry, 54(11), 4005–4015. https://doi.org/10.1021/jf052756t

Bennett, R. N., Wallsgrove, R. M. (1994). Secondary metabolites in plant defence mechanisms Tansley. The New Phytologist, 127(4), 617–633. https://doi.org/10.1111/j.1469-8137.1994.tb02968.x

Bertelli, D., Plessi, M., Braghiroli, D., Monzani, A. (1998): Separation by solid phase extraction and quantification by reverse phase HPLC of sulforaphane in broccoli. Food Chemistry, 63(3), 417–421. https://doi.org/10.1016/S0308-8146(98)00052-1

Brandt, K., Christensen, L. P., Hansen-Møller, J., Hansen, S. L., Haraldsdottir, J., Jespersen, L., Purup, S., Kharazmi, A., Barkholt, V., Frøkiær, H., Kobæk-Larsen, M. (2004). Health promoting compounds in vegetables and fruits: a systematic approach for identifying plant components with impact on human helath. Trend sin Food Science and Technology, 15(7–8), 384–393. https://doi.org/10.1016/j.tifs.2003.12.003

Clarke, J., Dashwood, R. H., Hoa, E. (2008). Multi-targeted prevention of cancer by sulforaphane. Cancer Letters, 269(2), 291–304. https://doi.org/10.1016/j.canlet.2008.04.018

Conaway, C. C., Getahun, S. M., Liebes, L. L., Pusateri, D., Botero-Omary, M., Chung, F. L. (2000). Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutrition and Cancer, 38(2), 168–178. https://doi.org/10.1207/S15327914NC382_5

Doblado, R., Frias, J., Vidal-Valverde, C. (2007). Changes in vitamin C content and antioxidant capacity of raw and germinated cowpea (Vigna sinensis var. carilla) seeds induced by high pressure treatment. Food Chemistry, 101(3), 918–923. https://doi.org/10.1016/j.foodchem.2006.02.043

Fahey, J. W., Talalay, P. (1999). Antioxidant functions of sulfonaphane: a potent inducer of Phase-II detoxication enzymes. Food Chemical Toxicology, 37(9–10), 973–979. https://doi.org/10.1016/S0278-6915(99)00082-4

Fahey, J. W., Ourisson, P. J., Degnan, F. H. (2006). Pathogen detection, testing, and control in fresh broccoli sprouts. Nutrition Journal, 5. 13. https://doi.org/10.1186/1475-2891-5-13

Fahey, J. W., Zhang, Y., Talalay, P. (1997). Broccoli sprouts: an expceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proceedings of the National Academy of Sciences, 94(19), 10367–10372. https://doi.org/10.1073/pnas.94.19.10367

Ferlay, J., Bray, F., Pisani, P., Parkin, D. (2004): GLOBOCAN: 2002 Cancer Incidence, Mortality and Prevalence Worldwide. IARC Press, Lyon, France.

Fernandez-Orozco, R., Frias, J., Zielinski, H., Piskula, M. K., Kozlowska, H., Vidal-Valverde, C. (2008). Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv. emmerald, Glycine max cv. Jutro and Glycine max cv. Merit. Food Chemistry, 111(3), 622–630. https://doi.org/10.1016/j.foodchem.2008.04.028

Fernández-Orozco, R., Piskula, M. K., Zielinski, H., Kozlowska, H., Frias, J., Vidal-Valverde, C. (2006). Germination as a process to improve the antioxidant capacity of Lupinus angustifolius L. var. Zapaton. European Food Research and Technology, 223. 495–502. https://doi.org/10.1007/s00217-005-0229-1

Finley, J. W. (2005). Proposed criteria for assessing the efficacy of cancer reduction by plant foods enriched in carotenoids, glucosinolates, polyphenols and selenocompounds. Annals of Botany, 95(7), 1075–1096. https://doi.org/10.1093/aob/mci123

Frias, J., Martinez-Villaluenga, C., Gulewicz, P., Perez-Romero, A., Pilarski, R., Gulewicz, K., Vidal-Valverde, C. (2007). Biogenic amines and HL60 citotoxicity of alfalfa and fenugreek sprouts. Food Chemistry, 105(3), 959–967. https://doi.org/10.1016/j.foodchem.2007.04.043

Frias, J., Miranda, M. L., Doblado, R., Vidal-Valverde, C. (2005a): Effect of germination and fermentation on the antioxidant vitamin content and antioxidant capacity of Lupinus albus L. var. Multolupa. Food Chemistry, 92(2), 211–220. https://doi.org/10.1016/j.foodchem.2004.06.049

Frias, J., Zielinski, H., Piskuła, M. K., Kozłowska, H., Vidal-Valverde, C. (2005b): Inositol phosphate content and trypsin inhibitor activity in ready-to-eat cruciferous sprouts. Food Chemistry, 93(2), 331–336. https://doi.org/10.1016/j.foodchem.2004.09.031

Gabriel, A. A. (2005). Microbial quality of chlorine soaked mung bean seeds and sprouts. Food Science and Technology Research, 11(1), 95–100. https://doi.org/10.3136/fstr.11.95

Gamet-Payrastre, L. (2006). Signaling pathways and intracellular targets of sulforaphane mediating cell cycle arrest and apoptosis. Current Cancer Drug Targets, 6(2), 135–145. https://doi.org/10.2174/156800906776056509

Gergely, V., Montes-Bayón, M., Fodor, P., Sanz-Medel, A. (2006). Selenium species in aqueous extracts of alfalfa sprouts by two-dimensional liquid chromatography coupled to inductively coupled plasma mass spectrometry and electrospray mass spectrometry detection. Journal of Agriculture and Food Chemistry, 54(13), 4524–4530. https://doi.org/10.1021/jf060320n

Gil, V., Macloed, A. J. (1980). Benzylglucosinolate degradation in Lepidium sativum: effects of plant age and time of autolysis. Phytochemistry, 19. 1365–1368.

Gill, C. I. R., Haldar, S., Porter, S., Matthews, S., Sullivan, S., Coulter, J., McGlynn, H., Rowland, I. (2004). The effect of cruciferous and leguminous sprouts on genotoxicity, in vitro and in vivo. Cancer Epidemiology Biomarkers and Prevention, 13(7), 1199–1205. https://doi.org/10.1158/1055-9965.1199.13.7

Glendening, T. M., Poulton, J. E. (1988). Glucosinolate biosynthesis. Sulfation of desulfobenzylglucosinolate by cell-free extracts of cress (Lepidium sativum L.) seedlings. Plant Physiology, 86(2), 319–321. https://doi.org/10.1104/pp.86.2.319

González-Barrio, R., Beltrán, D., Cantos, E., Gil, M. I., Espin, J. C., Tomás-Barberan, F. A. (2006). Comparison of ozone and UV-C treatments ont he postharvest silbenoid monomer, dimer and trimer induction in var. „Superior” white table grapes. Journal of Agriculture and Food Chemistry, 54(12), 4222–4228. https://doi.org/10.1021/jf060160f

Haddad, P. S., Azar, G. A., Groom, S., Boivin, M. (2005). Natural health products, modulation of immune function and prevention of chronic diseases. Evidence- Based Research in Complementary and Alternative Medicine, 2. 512–520. https://doi.org/10.1093/ecam/neh125

Hama, H., Jamanoshita, O., Chiba, M., Takeda, I., Nakajima, T. (2008). Selenium-enriched japanese radish sprouts influence glutathione peroxidase and glutathione S-transferase in an organ-specific manner in rats. Journal of Occupational Health, 50(2), 147–154. https://doi.org/10.1539/joh.L7130

Harrison, H. C. (1994). Growing Edible Sprotus at Home (A3385). University of Wisconsin-Extension (UWEX), Cooperative Extension Publications RP-04-94-1.5M-20-MSC. Madison, Wisconsin, USA.

Heaney, R. K., Fenwick, G. R. (1987). In: Natural Toxicants in Foods: Progress and Prospects. Ellis Horwood Series in Food Science and Technology. (Ed. Watson, H.) Ellis Horwood, Chichester, UK, 76–109.

Ho, C. Y., Lin, Y. T., Labbe, R. G., Shetty, K. (2006). Inhibition of Helicobacter pylori by phenolic extracts of sprouted peas (Pisum sativum L.) Journal of Food Biochemistry, 30. 21–34. https://doi.org/10.1111/j.1745-4514.2005.00032.x

Holst, B., Williamson, G. (2004). A critical review of the bioavailability of glucosinolates and related compounds. Natural Product Reports, 21(3), 425–447. https://doi.org/10.1039/b204039p

Hsu, C. K., Chiang, B. H., Chen, Y. S., Yang, J. H., Liu, C. L. (2008). Improving the antioxidant activity of buckwheat (Fagopyrum tataricm Gaertn) sprout with trace element water. Food Chemistry, 108(2), 633–641. https://doi.org/10.1016/j.foodchem.2007.11.028

International Food Information Council Foundation (2006). Functional foods fact sheet: antioxidants.

Janicki, B., Kupcewicz, B., Napierala, A., Madzielewska, A. (2005). Effect of temperature and light (UV, IR) on flavonol content in radish and alfalfa sprouts. Follia Biologica, 53(Suppl. 1), 121–125. https://doi.org/10.3409/173491605775789272

Jeffery, E. H., Jarrell, V. (2001). Cruciferous vegetables and cancer prevention. In: Handbook of Nutraceuticals and Functional Foods. (Ed. Wildman REC.) CRC Press: Boca Raton FL, 169–192.

Kayodé, P. A. P., Nout, M. J. R., Bakker, E. J., Van Boekel, M. A. J. S. (2006). Evaluation of the simultaneous effects of processing parameters ont he iron and zinc solubility of infant sorghum porridge by response surface methodology. Journal of Agriculture and Food Chemistry, 54(12), 4253–4259. https://doi.org/10.1021/jf0530493

Kensler, T. W., Jacobson, L. P., Wiang, J. B., Fahey, J. W., Ye, L., Chen, J. G., Egner, P. A., Stephenson, K. K., Coady, J. L. (2005). Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenantrene tetraols in a randomized clinical trial in He Zuo township, Qidong, People’s Republic of China. Cancer Epidemiology Biomarkers and Prevention, 14(11), 2605–2613. https://doi.org/10.1158/1055-9965.EPI-05-0368

Kim, E. H., Kim, S. H., Chung, J. I., Chi, H. Y., Kim, J. A., Chung, I. M. (2006). Analysis of phenolic compounds and isoflavones in soybean seeds (Glycine max (L.) Merill) and sprouts grown under different conditions. European Food Research and Technology, 222. 201–208. https://doi.org/10.1007/s00217-005-0153-4

Kim, S. J., Zaidul, I. S. M., Maeda, T., Suzuki, T., Hashimoto, N., Takigawa, S., Noda, T., Matsuura-Endo, C., Yamauchi, H. (2007). A time-course study of flavonoids in the sprouts of tartary (Fagopyrum tataricum Gaertn.) buckwheats. Scientia Horticulturae, 115(1), 13–18. https://doi.org/10.1016/j.scienta.2007.07.018

Kim, S. L., Kim, S. K., Park, C. H. (2004). Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Research International, 37(4), 319–327. https://doi.org/10.1016/j.foodres.2003.12.008

Kim, S. D., Kim, S. H., Hong, E. H. (1993). Composition of soybean sprout and its nutritional value. Korean Soybean Sigest, 10. 1–9.

Kim, S. K. (1998): Application of chitin and chitosan in agriculture. Journal of Chitin Chitosan, 3. 327–342.

Kim, S. O. (1988). Effect of growth regulators on growth and vitamin C biosynthesis during germination of soybeans. Journal Korean Society Food and Nutrition, 17. 115–124.

King, R. E., Bomser, J. A., Min, D. B. (2006). Bioactivity of resveratrol. Comprehensive Reviews in Food Science and Food Safety, 5(3), 65–70. https://doi.org/10.1111/j.1541-4337.2006.00001.x

Kumar, V., Rani, A., Pandey, V., Chauhan, G. S. (2006). Changes in lipoxygenase isozymes and trypsin inhibitor activityin soybean during germination at different temperatures. Food Chemistry, 99(3), 563–566. https://doi.org/10.1016/j.foodchem.2005.08.024

Kuo, Y. H., Rozan, P., Lambein, F., Frias, J., Vidal-Valverde, C. (2004). Effects of different germination conditions on the content s of free protein and non-protein amino acids of commercial legumes. Food Chemistry, 86(4), 537–545. https://doi.org/10.1016/j.foodchem.2003.09.042

Lampe, J. W., Peterson, S. (2002). Brassica, biotransformation and cancer risk: genetic polymorphism alter the preventive effects of cruciferous vegetables. Journal of Nutrition, 132(10), 2991–2994. https://doi.org/10.1093/jn/131.10.2991

Lee, S. O., Lee, I. S. (2006). Induction of quinone reductase, the phase 2 anticarcinogenic marker enzyme, cells by radish sprouts, Raphanus sativus L. Journal of Food Sciences, 71(2), S144–S148. https://doi.org/10.1111/j.1365-2621.2006.tb08917.x

Lee, Y. S., Kim, Y. H., Kim, S. B. (2005). Changes in the respiration, growth, and vitamin C content of soybean sprouts in response to chitosan of different molecular weights. HortScience, 40(5), 1333–1335. https://doi.org/10.21273/HORTSCI.40.5.1333

Li, D., Wub, K., Forbes Howie, A., Beckett, G. F., Wang, W., Bao, Y. (2008). Synergy between broccoli sprout extract and selenium in the upregulation of thioredoxin reductase in human hepatocytes. Food Chemistry, 110(1), 193–198. https://doi.org/10.1016/j.foodchem.2008.01.032

Liang, H., Yuan, Q., Xiao, Q. (2005). Purification of sulforaphane from Brassica oleracea seed meal using low-pressure column chromatography. Journal of Chromatography, 828(1–2), 91–96. https://doi.org/10.1016/j.jchromb.2005.09.041

Liang, Y. S., Kim, H. K., Lefeber, A. W. M., Erkelens, C., Choi, Y. H., Verpoorte, R. (2006). Identification of phenylpropanoids in methyl jasmonate treated Brassica rapa leaves using two-dimensional nuclear magnetic resonance spectroscopy. Journal of Chromatography, 1112(1–2), 148–155. https://doi.org/10.1016/j.chroma.2005.11.114

Linnemann, A. R., Benner, M., Verkerk, R., van Boekel, M. A. J. S. (2006). Consumer-driven food product development. Trends in Food Science and Technology, 17(4), 184–190. https://doi.org/10.1016/j.tifs.2005.11.015

Lintschinger, J., Fuchs, N., Moser, H., Jager, R., Hlebeina, T., Markolion, G., Gössler, W. (1997). Uptake of various trace elements during germination of wheat, buckwheat and quinoa. Plant Foods for Human Nutrition, 50. 223–237. https://doi.org/10.1007/BF02436059

Lopez-Amoros, M. L., Hernandez, T., Estrella, I. (2006). Effect of germination on legume phenolic compounds and their antioxidant activity. Journal of Food Composition and Analysis, 19(4), 277–283. https://doi.org/10.1016/j.jfca.2004.06.012

Martínez-Sánchez, A., Allende, A., Bennett, R. N., Ferreres, F., Gil, M. I. (2006). Microbial, nutritional and sensory quality of Rocket leaves as affected by different sanitizers. Postharvest Biology and Technology, 42(1), 86–97. https://doi.org/10.1016/j.postharvbio.2006.05.010

Martinez-Villaluenga, C., Frias, J., Gulewicz, P., Gulewisz, K., Vidal-Valverde, C. (2008). Food safety evaluation of broccoli and radish sprouts. Food and chamical Toxicology, 46(5), 1635–1644. https://doi.org/10.1016/j.fct.2008.01.004

Mbithi-Mwikya, S., Van Camp, J., Yiru, Y., Huyghebaert, A. (2000). Nutrient and antinutrient changes in finger millet (Eleusine coracan) during sprouting. Lebensm. Wiss. Technol., 33(1), 9–14. https://doi.org/10.1006/fstl.1999.0605

Moreno, D. A., Carvajal, M., López-Berenguer, C., García-Viguera, C. (2006). Chemical and biological characterisation of nutraceutical compounds of broccoli. Journal of Pharmaceutical and Biomedical Analysis, 41(5), 1508–1522. https://doi.org/10.1016/j.jpba.2006.04.003

Morton, M. S., Griffiths, K., Wilcox, G., Wahlqvist, M. L. (1994). Determination of lignans and isoflavonoids in human female plasma following dietary supplementation. Journal of Endocrinology, 142(2), 251–259. https://doi.org/10.1677/joe.0.1420251

Munday, R., Munday, C. M. (2002). Selective induction of phase II enzymes in the urinary bladder of rats by allyl isothiocyanate, a compound derived from Brassica vegetables. Nutrition and Cancer, 44(1), 52–59. https://doi.org/10.1207/S15327914NC441_7

Murashima, M., Watanabe, S., Zhuo, X. G., Uehara, M., Kurashige, A. (2004). Phase 1 study of multiple biormarkers for metabolism and oxidative stress alter one-week intake of broccoli sprouts. BioFactors, 22(1–4), 271–275. https://doi.org/10.1002/biof.5520220154

Murillo, G., Mehta, R. G. (2001). Cruciferous vegetables and cancer prevention. Nutrition and Cancer, 41(1–2), 17–28. https://doi.org/10.1080/01635581.2001.9680607

Nakagawa, K., Umeda, T., Higuchi, O., Tsuzuki, T., Miyazawa, T. (2006).: Evaporative light-scattering analysis of sulforaphane in broccoli samples: quality of broccoli products regarding sulforaphane contents. Journal of Agriculture and Food Chemistry, 54(7), 2479–2483. https://doi.org/10.1021/jf051823g

Nodaa, T., Takigawaa, S., Matsuura-Endoa, C., Saitoa, K., Takataa, K., Tabikia, T., Wickramasingheb, T. A. M. (2004). The physicochemical properties of partially digested starch from sprouted wheat grain. Carbohydrate Polymers, 56(3), 271–277. https://doi.org/10.1016/j.carbpol.2003.10.015

Nugon-Baudon, L., Szylit, O., Raibaud, P. (1988). Production of toxic glucosinolate derivatives from rapeseed meal by intestinal microflora of rat and chicken. Jorunal of the Science Food and Agriculture, 43(4), 299–308. https://doi.org/10.1002/jsfa.2740430403

Penas, E., Gomez, R., Frias, H., Vidal-Valverde, C. (2009). Efficacy of combinations of high pressure treatment, temperatureand antimicrobial compounds to improve the microbiological quality of alfalfa seeds for sprout production. Food Control, 20(1), 31–39. https://doi.org/10.1016/j.foodcont.2008.01.012

Penas, E., Gomez, R., Frias, J., Vidal-Valverde, C. (2008). Application of high-pressure on alfalfa (Medigo sativa) and mung bean (Vigna radiata) seeds to enhance the microbiological safety of their sprouts. Food Control, 19(7), 698–705. https://doi.org/10.1016/j.foodcont.2007.07.010

Pereira, F. M. V., Rosa, E., Fahey, J. W., Stephenson, K. K., Carvalho, R., Aires, A. (2002). Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (Brassica oleracea var. Italica) sprouts and their effect ont he induction of mammalian phase 2 enzymes. Jorunal of Agriculture and Food Chemistry, 50(21), 6239–6244. https://doi.org/10.1021/jf020309x

Perez-Balibrea, S., Moreno, D. A., García-Viguera, C. (2006). Determination of the health-promoting compounds of broccoli sprouts grown under two different light conditions: In: Future Trends in Phytochemistry. A young Scientists Symposium. Palackỳ University & Institute of Wxperimental Botany AS and the Phytochemical Society of Europe (Olomouc, Czech Republic).

Perocco, P., Bronzetti, G., Canistro, D., Valgimigli, L., Sapone, A., Affatato, A., Pedulli, G. F., Pozzetti, L., Broccoli, M., Iori, R., Barillari, J., Sblendorio, V., Legator, M. S., Paolini, M., Abdel-Rahman, S. Z. (2006). Glucoraphamin, the bioprecursor of the widely extolled chemopreventive agent sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutrition and Cancer, 38. 168–178.

Poulev, A., O’Neal, J. M., Logendra, S. Pouleva, R., Tineva, V., Garvey, A. S., Gleba, D., Jenkins, I. S., Halpern, B. T., Kneer, R., Cragg, G. M., Raskin, I. (2003). Elicitation, a new window into plant chemodiversity and phytochemical drug discovery. Journal of Medicinal Chemistry, 46(12), 2542–2547. https://doi.org/10.1021/jm020359t

Randhir, R., Kwon, Y. I., Shetty, K. (2008). Effect of thermal processing on phenolics, antioxidant activity and health-relevant functionality of select grain sprouts and seedlings. Innovative Food Science and Emerging Technologies, 9(3), 355–364. https://doi.org/10.1016/j.ifset.2007.10.004

Reinli, K., Block, G. (1996): Phytoestrogen content of foods – a compendium of literature values. Nutrition & Cancer, 26(2), 123–148. https://doi.org/10.1080/01635589609514470

Rozan, P., Kuo, Y. H., Lambein, F. (2001). Amino acids in seeds and seedlings of the genus Lens. Phytochemistry, 58(2), 281–289. https://doi.org/10.1016/S0031-9422(01)00200-X

Sangronis, E., Machado, C. J. (2007). Influence of germination on the nutritional quality of Phaseolus vulgaris and Cajanus cajan. LWT, 40(1), 116–120. https://doi.org/10.1016/j.lwt.2005.08.003

Sato, K., Kudo, Y., Muramatsu, K. (2004). Incorporation of a high level of vitamin B12 into a vegetable, kaiwaredaikon (Japanese radish sprout), by the absorption from its seeds. Biochimica et Biophysica Acta, 1672(3), 135–137. https://doi.org/10.1016/j.bbagen.2004.03.011

Schenker, S. (2002). Facts behind the headlines. Broccoli. British Nutrition Foundation – Nutrition Bulletin, 27(3), 159–160. https://doi.org/10.1046/j.1467-3010.2002.00257.x

Schneeman, B. O. (2004). Emerging food technology and world health. Journal of Food Sciences, 69(4), C123–C126. https://doi.org/10.1111/j.1365-2621.2004.tb06316.x

Shapiro, T. A., Fahey, J. W., Wade, K. L., Stephenson, K. K., Talalay, P. (2001). Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excreation in humans. Cancer Epidemiology Biomarkers and Prevention, 10. 501–508.

Shetty, K., McCue, P. (2003). Phenolic antioxidant biosynthesis in plants for funcitonal food application: integration of systems biology and biotechnological approaches. Food Biotechnology, 17(2), 67–97. https://doi.org/10.1081/FBT-120023073

Shikita, M., Fahey, J. W., Goleen, T. R., Holtzclaw, W. D., Talalay, P. (1999). An unusual case of ΄uncompetitive activation’ by ascorbic acid: purification and kinetic properties of a myrosinase from Raphanus sativus seedlings. Biochemical Jorunal, 341(3), 725–732. https://doi.org/10.1042/bj3410725

Sripriya, G., Antony, U., Chandra, T. S. (1997). Changes in carbohydrate, free amino acids, organic acids, phytate and HCl extractability of minerals during germination and fermentation of finger millet (Eleusine coracana). Food Chemistry, 58(4), 3455–3501. https://doi.org/10.1016/S0308-8146(96)00206-3

Sugihara, S., Kondu, M., Chihara, Y., Yuji, M., Hattori, H., Yoshida, M. (2004). Preparation of Selenium-enriched Sprouts and Identification of their Selenium Spacies by High-performance Liquid Chromatografy- Inductively Coupled plasma Mass Spectromtry. Biosci. Biotechnol. Biochem., 68(1), 193–199. https://doi.org/10.1271/bbb.68.193

Sung, H. G., Shin, H. T., Ha, J. K., Lai, H. L., Cheng, K. J., Lee, J. H. (2005). Effect of germination temperature on characteristics of phytase production from barley. Bioresource Technology, 96(11), 1297–1303. https://doi.org/10.1016/j.biortech.2004.10.010

Takaya, Y., Kondo, Y., Furukawa, T., Niwa, M. (2003). Antioxidant constituenst of radish sprout (Kaiware-daikon), Raphanus sativush L. Journal Agric. Food Chem., 51(27), 8061–8066. https://doi.org/10.1021/jf0346206

Thomas, J. L., Palumbo, M. S., Farrar, J. A., Farver, T. B., Cliver, D. O. (2003). Industry practices and compliance with U.S. Food and Drug Administration Guidelines among California sprout firms. Journal of Food Protection, 66(7), 1253–1259. https://doi.org/10.4315/0362-028X-66.7.1253

Tokiko, M., Koji, Y. (2006). Proximate composition, fatty acid composition and free amino acid composition of sprouts. Journal for the Integrated Study of Dietary Habits, 16(4), 369–375. https://doi.org/10.2740/jisdh.16.369

Ubbink, J., Mezzenga, R. (2006). Delivery of functionality in complex food systems: introduction. Trend sin Food Science and Technology, 17(5), 194–195. https://doi.org/10.1016/j.tifs.2006.01.004

Urbano, G., Aranda, P., Vilchez, A., Aranda, C., Cabrera, L., Porres, J., Lopez-Jurado, M. (2005a). Effects of germination on the composition and nutritive value of proteins in Pisum Sativum, L. Food Chemistry, 93(4), 671–679. https://doi.org/10.1016/j.foodchem.2004.10.045

Urbano, G., López-Jurado, M., Frejnagel, S., Gómez-Villalvaa, E., Porres, J. M., Frías, H., Vidal-Valverde, C., Aranda, P. (2005b). Nutritional assessment of raw and germinated pea (Pisum sativum L.) protein and carbohydrate by in vitro and in vivo techniques. Nutrition, 21(2), 230–239. https://doi.org/10.1016/j.nut.2004.04.025

Urbano, G., López-Jurado, M., Aranda, C., Vilchez, A., Cabrera, L., Porres, J. M., Aranda, P. (2006). Evaluation of zinc and magnesium bioavailability from pea (Pisum sativum L.) sprouts. Effect of illumination and different germination periods. International Journal of Food Science and Technology, 41(6), 618–626. https://doi.org/10.1111/j.1365-2621.2005.01107.x

Valenzano, D. R., Cellerino, A. (2006). Resveratrol and the pharmacology of aging: a new vertebrate model to validate and old molecule. Cell Cycle, 5(10), 1027–1032. https://doi.org/10.4161/cc.5.10.2739

Vitaglione, P. Sforza, S., Galaverna, G., Ghidini, C., Caporaso, N., Vescovi, P. P., Fogliano, V., Marchelli, R. (2005). Bioavailability of transresveratrol from red wine in humans. Molecular Nutrition and Food Research, 49(5), 495–504. https://doi.org/10.1002/mnfr.200500002

Wanasundara, P. K. J. P. D., Shahidi, F., Brosnan, M. E. (1999). Changes in flax (Linum usitatissmum) seed nitrogenous compounds during germination. Food Chemistry, 65(3), 289–295. https://doi.org/10.1016/S0308-8146(98)00176-9

Wang, K. H., Lai, Y. H., Chang, J. C., Ko, T. K., Shyu, S. L., Chiou, R. Y. Y. (2005). Germination of peanut kernels to enhance resveratrol biosynthesis and prepare sprouts as a functional vegetable. Journal of Agriculture and Food Chemistry, 53(2), 242–246. https://doi.org/10.1021/jf048804b

Webb, G. P. (2006). Dietary Supplements and Functional Foods. Blackwell Publishing Ltd., Oxford, 1–120. https://doi.org/10.1002/9780470995754

Wolucka, B. A., Goossens, A., Inzé, D. (2005). Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspencions. Journal of Experimental Botany, 56(419), 2527–2538. https://doi.org/10.1093/jxb/eri246

Xu, M. J., Dong, J. F., Zhu, M. Y. (2005). Effects of germination conditions on ascorbic acid level and qield of soybean sprouts. Journal of the Science of Food Agriculture, 85(6), 943–947. https://doi.org/10.1002/jsfa.2050

Ye, L., Dinkova-Kostova, A. T., Wade, K. L., Zhang, Y., Shapiro, T. A., Talalay, P. (2002). Quantitative determination of dithiocarbamates in human plasma, serum erithrocytes and urine: pharmacokinetics of broccoli sprout isothiocyanates in humans. Clinica Chimica Acta, 316(1–2), 43–53. https://doi.org/10.1016/S0009-8981(01)00727-6

Yoshida, M., Okada, T., Namikawa, Y., Matsuzaki, Y., Nishiyama, T., Fukunaga, K. (2007a). Evaluation of nutritional availability and anti-tumor activity of seleneium contained in selenium-enriched kaiware radish sprouts. Biosci. Biotechnol. Biochem., 71(9), 2198–2205. https://doi.org/10.1271/bbb.70158

Yoshida, M., Sano, K., Ishiyuki, E., Nishiyama, T., Fukunaga, K. (2007b). Assesment of nutritional availability of selenium-enriched pumpkin. Biomed Res Trace Elements, 18(4), 391–394.

Zhao, J., Davis, L. C., Verpoorte, R. (2005). Elicitor signal transductiion leading to production of plant secondary metabolites. Biotechnology Advances, 23(4), 283–333. https://doi.org/10.1016/j.biotechadv.2005.01.003

Zielinski, H., Frias, J., Piskula, M. K., Kozlowska, H., Vidal-Valverde, C. (2005). Vitamin B1 and B2 dietary fiber and minerals content of Cruciferæ sprouts. European Food Research and Technology, 221. 78–63. https://doi.org/10.1007/s00217-004-1119-7

Published

2010-02-15

How to Cite

Márton, M., & Csapó, J. (2010). The role of sprouts in human nutrition: A review. Acta Agraria Kaposváriensis, 14(1), 31-55. https://journal.uni-mate.hu/index.php/aak/article/view/1943

Most read articles by the same author(s)

<< < 1 2 3 4 5 > >>