D-amino acid content of feed

A review

Authors

  • János Csapó Pannon University of Agriculture, Faculty of Animal Science, H-7400 Kaposvár, Guba S. u. 40. , Pannon Agrártudmányi Egyetem, Állatenyésztési Kar, Kémiai Intézet, 7400 Kaposvár, Guba S. u. 40.
  • Zsuzsanna Csapóné Kiss Pannon University of Agriculture, Faculty of Animal Science, H-7400 Kaposvár, Guba S. u. 40. , Pannon Agrártudmányi Egyetem, Állatenyésztési Kar, Kémiai Intézet, 7400 Kaposvár, Guba S. u. 40.
  • Éva Vargáné Visi Pannon University of Agriculture, Faculty of Animal Science. H-7400 Kaposvár, Guba S. u. 40. , Pannon Agrártudmányi Egyetem, Állatenyésztési Kar, Kémiai Intézet, 7400 Kaposvár, Guba S. u. 40. https://orcid.org/0000-0001-8613-0620 (unauthenticated)
  • Gabriella Andrássyné Baka Pannon University of Agriculture, Faculty of Animal Science, H-7400 Kaposvár, Guba S. u. 40. , Pannon Agrártudmányi Egyetem, Állatenyésztési Kar, Kémiai Intézet, 7400 Kaposvár, Guba S. u. 40.
  • Éva Terlakyné Balla Pannon University of Agriculture, Faculty of Animal Science, H-7400 Kaposvár, Guba S. u. 40. , Pannon Agrártudmányi Egyetem, Állatenyésztési Kar, Kémiai Intézet, 7400 Kaposvár, Guba S. u. 40.

Keywords:

D-amino acids, free D-amino acids, racemization, heat treatment of proteins, alkaline treatment, bacterial activity

Abstract

The most important source of D-amino acids in nutritional protein is the processing that some foods undergo, either in cooking or as part of the manufacturing process used to prepare commercial food products. Supermarkets contain increasing quantities of processed food products, including breakfast cereals, fried potato and corn chips, liquid and powdered infant formulas, and meat substitutes. Such products probably contain significant quantities of D-amino acids, coupled with the evidence that these D-amino acids most likely have deleterious or negative nutritional effects. Alkali treatment of proteins catalyses racemization of optically active amino acids. The racemization rates vary among proteins but it is observed that, within each protein studied, the relative order is similar. Factors which influence racemization include pH, temperature, time of exposure to alkali, and the inductive nature of amino acid side chains. Protein-bound D-amino acids formed during alkali and heat treatment of food proteins may adversely affect the nutritional quality and safety of processed foods. D-amino acids in dietary proteins reduce the digestibility as well as the availability of the component amino acids. This may be the result of decreased amounts of essential amino acid L-enantiomers, decreased digestibility through peptide bonds not susceptible to normal peptidase cleavage, specific toxicity of certain D-isomers, and/or modification of the biological effects of lysinoalanine or other unnatural amino acids. On the other hand, certain D-amino acids may be beneficial. The limited digestibility of D-amino acids in dietary proteins can be utilised in nutrition, for example in weight management or chronic pain control.

Author Biography

  • János Csapó, Pannon University of Agriculture, Faculty of Animal Science, H-7400 Kaposvár, Guba S. u. 40., Pannon Agrártudmányi Egyetem, Állatenyésztési Kar, Kémiai Intézet, 7400 Kaposvár, Guba S. u. 40.

    corresponding author
    csapo@elettan.kaposvar.pate.hu

     

References

Bada, J. L. (1984). In vivo racemization in mammalian proteins. Methods Enzimol., 106. 98–115. https://doi.org/10.1016/0076-6879(84)06011-0

Bada, J. L. (1985). Racemization of amino acids. In Chemistry and Biochemistry of Amino Acids, ed. G.C. Barrett, 399–411. London-New York, Chapman & Hall. https://doi.org/10.1007/978-94-009-4832-7_13

Bada, J. L., Cronin, J. R., Ho, M. S., Kvenvolden, K. A. and Lawless, J. G. (1983). On the reported optical activity of amino acids in the Murchison meteorite. Nature, 310. 494–497. https://doi.org/10.1038/301494a0

Bada, J. L., Miller, S. L. (1987). Racemization and the origin of optical active organic compounds in living organisms. In: H. Man and J.L. Bada (1987): Dietary D-amino acids.Ann. Rev. Nutr., 7. 209–225. https://doi.org/10.1146/annurev.nu.07.070187.001233

Bender, D. A. (1985). Amino Acid Metabolism, Chichester/New York, Wiley 2nd ed.

Bender, A. E., Krebs, H. A. (1950). The oxidation of various synthetic a-amino acids by mammalian D-amino acid oxidase, L-amino acid oxidase of cobra venom and the L- and D amino acid oxidases of Neuospora crassa. Biochem. J., 46. 210–219. https://doi.org/10.1042/bj0460210

Berg, C. P. (1959). Utilization of D-amino acids. In Protein and amino acid nutrition. ed. A.A. Albanese, 57–96. New York, Academic. https://doi.org/10.1016/B978-0-12-395683-5.50008-0

Bodansky, M., Perlman, D. (1969). Antibiotic peptides. Science, 163. 352–358. https://doi.org/10.1126/science.163.3865.352

Boehm, M. F., Bada, J. L. (1984a). Racemization of aspartic acid and phenylalanine in the sweetener aspartame at 100 °C. Proc. Natl. Acad. Sci., USA, 81. 5263–5266. https://doi.org/10.1073/pnas.81.16.5263

Boehm, M. F., Bada, J. L. (1984b). Investigations of in vivo methionine racemization in mammalian tissues. Biochem. Int., 8. 603–608.

Brückner, H., Hausch, M. (1990). D-amino acids in dairy products: Detection, origin and nutritional aspects. I. Milk, fermented milk, fresh cheese and acid curd cheese. Milchwissenschaft, 45. 357–360.

Budd, K. (1983). Use of D-phenylalanine, and enkephalinase inhibitor, in the treatment of intractable pain. In Adv. Pain Res. Ther., 5. 305–308.

Bunjapamai, S., Mahoney, R. R., Fagerson, I. S. (1982). Determination of D-amino acids in some processed foods and effect of racemization on in vitro digestibility of casein. J. Food Sci., 47. 1229–1234. https://doi.org/10.1111/j.1365-2621.1982.tb07654.x

Burton, K. (1955). D-amino acid oxidase from kidney. Methods Enzymol., 2. 199–204. Chakravarty, P.K., Carl, P.L., Weber, M.J., Katzenelknbogen, J.A. (1983). Plasmin-activated prodrugs for cancer chemotheraphy. 2. Synthesis and biological activity of peptidyl derivatives of dexorubicin. J. Med. Chem., 26. 638–644.

Cheng, R. S. S., Pomeranz, B. (1979). Correlation of genetic difference in endorphin systems with analgesic effects of D-amino acid in mice. Brain Res., 177. 583–587. https://doi.org/10.1016/0006-8993(79)90477-3

Cherkin, A., Davis, J. L., Garman, M. W. (1978). D-prolin stereospecifity and sodium chloride dependence of lethal convulsant activity in the chick. Pharmacol. Biochem. Behav., 8. 623–625. https://doi.org/10.1016/0091-3057(78)90399-4

Chung, S. Y., Swaisgood, H. E., Catignani, G. L. (1986). Effect of alkali treatment in the presence of fructose on digestibility of food proteins as determined by an immobilized digestive enzyme assay (IDEA). J. Agric. Food Chem., 34. 579–584. https://doi.org/10.1021/jf00069a051

Clarke, S. (1985). The role of Asp and Asn residues in the aging of erythrocyte proteins: Cellular metabolism of racemized and isomerized forms by methylation reactions. In Cellular and Molecular Aspects of Aging: The Red Cells as a Model. Ed. J.W. Eaton, D. K. Konzen, J. G. White, 91–103. New York, Liss.

Corrigan, J. J. (1969). D-amino acids in animals. Science, 164. 142–149. https://doi.org/10.1126/science.164.3876.142

Csapó, J., Henics, Z. (1991). Quantitative determination of bacterial protein from the diaminopimelic acid and D-alanine content of rumen liquor and intestines. Acta Agr. Hung., 40. 159–173.

Csapó, J., Martin, T. G., Csapó-Kiss, Zs., Stefler, J., Némethy, S. (1995). Influence of udder inflammation on the D-amino acid content of milk. Journal of Dairy Science, 78. 2375–2381. https://doi.org/10.3168/jds.S0022-0302(95)76865-5

Csapó, J., Csapó-Kiss, Zs., Csordás, E., Fox, P. F., Wágner, L., Tálos, T. (1997). Különböző technológiával készült sajtok összes szabad- és szabad D-aminosav tartalma. Tejipar. 1997. 57. 1. 25–30.

Dakin, H. D. (1908). Note on the relative rate of absorption of optically isomeric substances from the intestine. J. Biol. Chem., 4. 437–439. https://doi.org/10.1016/S0021-9258(17)36365-2

Dakin, H. D., Dudley, H. W. (1913). The action of enzymes on racemized proteins and their fate in the animal body. J. Biol. Chem., 15. 271–277. https://doi.org/10.1016/S0021-9258(18)88526-X

D’Aniello, A., Guiditta, A. (1978). Presence of D-aspartate in squid axoplasm and in other regions of the cephalopod nervous system. J. Neurochem., 31. 1107–1108. https://doi.org/10.1111/j.1471-4159.1978.tb00155.x

DeGroot, A. P., Slump, P., Feron, V. J., VanBeek, L. (1976). Effects of alkali treated proteins: feeding studies with free and protein-bound lysinoalanine in rats and other animals. J. Nutr., 106. 1527–1538.

Dixon, M., Kenworthy, P. (1967). D-aspartate oxidase of kidney. Biochem. Biophys. Acta, 146. 54–76. https://doi.org/10.1016/0005-2744(67)90073-3

Engel, M. H., Hare, P. E. (1982). Racemization rates of the basic amino acids. Carnegie Inst. Washington Yearb., 81. 422–425.

Felbeck, H. (1985). Occurrence and metabolism of D-aspartate in the gutless bivalve Solemya reidi. J. Exp. Zool., 234. 145–149. https://doi.org/10.1002/jez.1402340116

Felbeck, H., Wiley, S. (1987). Free D-amino acids in the tissues of marine bivalves. Biol. Bull., 173. 252–259. https://doi.org/10.2307/1541877

Finch, L. R., Hird, F. J. R. (1960). The uptake of amino acids by isolated segments of rat intestine. II. A survey of affinity for uptake from rates of uptake and competition for uptake. Biochim. Biophys. Acta, 43. 278–287. https://doi.org/10.1016/0006-3002(60)90438-8

Finley, J. W. (1985). Environmental effects of protein quality. In Chemical Changes in Food During Processing. (Inst. Food Technologists Basic Symp. Ser.), Ed. T. Richardson, J.W. Finley, 443–482. Westport, Conn. AVI Publ. https://doi.org/10.1007/978-1-4613-2265-8_19

Finley, J. W., Schwass, D. E., Eds. (1983). Xenobiotics in Foods and Feeds. ACS Symp. Ser. No. 234. Washington, DC. Ann. Chem. Soc., 421. https://doi.org/10.1021/bk-1983-0234

Fisher, G. H., Garcia, N. M., Payan, I. L., Cadilla-Perezrios, R., Sheramata, W. A., Man, E. H. (1986). D-aspartic acid in purified myelin and myelin basic protein. Biochem. Biophys. Res. Commun., 135. 683–687. https://doi.org/10.1016/0006-291X(86)90047-1

Friedman, M. (1977). Crosslinking amino acids – Stereochemistry and nomenclature. Adv. Exp. Med. Biol., 86B. 1–27. https://doi.org/10.1007/978-1-4757-9113-6_1

Friedman, M., Gumbman, M. R. (1984). The utilization and safety of isomeric sulfur-containing amino acids in mice. J. Nutr., 114. 2301–2310. https://doi.org/10.1093/jn/114.12.2301

Friedman, M., Liardon, R. (1985). Racemization kinetics of amino acid residues in alkali-treated soybean proteins. J. Agric. Food Chem., 33. 666–672. https://doi.org/10.1021/jf00064a025

Friedman, M., Zahnley, J. C., Masters, P. M. (1981). Relationship between in vitro digestibility of casein and its content of lysinoalanine and D-amino acids. J. Food Sci., 46. 127–134. https://doi.org/10.1111/j.1365-2621.1981.tb14545.x

Friedman, M., Grosjean, D. K., Zahnley, J. C. (1985). Carboxipeptidase inhibition by alkali-treated food proteis. J. Agric. Food Chem., 33. 208–213. https://doi.org/10.1021/jf00062a012

Fuse, M., Hayase, F., Kato, H. (1984). Digestibility of proteins and racemization of amino acid residues in roasted foods. J. Jpn. Soc. Nutr. Food Sci., 37. 348–354.

Gandolfi, I., Palla, G., Delprato, L., DeNisco, F., Marchelli, R., Salvadori, C. (1992). D-amino acids in milk as related to heat treatments and bacterial activity. J. Food Sci., 57. 377–379. https://doi.org/10.1111/j.1365-2621.1992.tb05498.x

Gibson, Q. H., Wiseman, G. (1951). Selective absorption of stereoisomers of amino acids from loops of the small intestine of the rat. Biochem. J., 48. 426–429. https://doi.org/10.1042/bj0480426

Gray, G. M., Cooper, H. L. (1971). Protein digestion and absoprtion. Gastroenterelogy, 61. 535–544. https://doi.org/10.1016/S0016-5085(19)33506-1

Gullino, P., Winitz, M., Birnbaum, S. M., Cornfield, J., Otey, M. C., Greenstein, J. P. (1956). Studies on the metabolism of amino acids and related compounds in vivo. I. Toxicity of essential amino acids, individually and in mixtures, and the protective effect of L-arginine. Arch. Biochem. Biophys., 64. 319–332. https://doi.org/10.1016/0003-9861(56)90276-4

Gund, P., Veber, P. (1979). On the base-catalysed epimerization of N-methylated peptides and diketopiperazines. J. Am. Chem. Soc., 101. 1885–1887. https://doi.org/10.1021/ja00501a046

Hayase, F., Kato, H., Fujimaki, M. (1973). Racemization of amino acid residues in protein during roasting. Agric. Biol. Chem., 37. 191–192. https://doi.org/10.1271/bbb1961.37.191

Hayase, F., Kato, H., Fujimaki, M. (1975). Racemization of amino acid residues in proteins and poly(L-amino)acids during roasting. J. Agric. Food. Chem., 23. 491–494. https://doi.org/10.1021/jf60199a055

Hayashi, R., Kameda, I. (1980a). Racemization of amino acid residues during alkali treatment of proteins and its adverse effect on pepsin digestibility. Agric. Biol. Chem., 44. 891–895. https://doi.org/10.1080/00021369.1980.10864038

Hayashi, R., Kameda, I. (1980b). Decreased proteolysis of alkali treated proteins: consequences of racemization in food processing. J. Food Sci., 45. 1430–1431. https://doi.org/10.1111/j.1365-2621.1980.tb06572.x

Hayashi, R. (1982). Lysinoalanine as a metal chelator: an implication for toxicity. J. Biol. Chem., 257. 13896–13898. https://doi.org/10.1016/S0021-9258(19)45314-3

Jenkins, W. L., Tovar, L. R., Schwass, D. E., Liardon, R., Carpenter, K. L. (1984). Nutritional characteristics of alkali-treated zein. J. Agric. Food Chem., 32. 1035–1041. https://doi.org/10.1021/jf00125a023

Kies, C., Fox, H., Aprahamian, S. (1975). Comparative values of L, DL and D-methionine supplementation of an oat-based diet for humans. J. Nutr., 105. 809–814. https://doi.org/10.1093/jn/105.7.809

Krebs, H. A. (1935). Metabolism of amino acids. III. Deamination of amino acids. Biochem. J., 29. 1620–1644. https://doi.org/10.1042/bj0291620

Krebs, H. A. (1948). The D- and L-amino acid oxidases. Biochem. Soc. Symp., 1. 2–19.

Liardon, R., Hurrel, R. F. (1983). Amino acid racemization in heated and alkali-treated proteins. J. Agric. Food. Chem., 31. 432–437. https://doi.org/10.1021/jf00116a062

Liardon, R., Lederman, S. (1986). Racemization kinetics of free and protein-bound amino acids under moderate alkaline treatment. J. Agric. Food. Chem., 34. 557–565. https://doi.org/10.1021/jf00069a047

Lubec, G., Wolf, C. H. R., Bartosch, B. (1990). Amino acid isomerisation and microwave exposure. The Lancet. March 31. 792.

Maga, J. A. (1984). Lysinoalanine in foods. J.Agric. Food. Chem., 32. 955–964. https://doi.org/10.1021/jf00125a001

Man, E. H., Fisher, G. H., Payan, I. L., Cadilla-Perezrios, R., Garcia, N. M. (1987). D-aspartate in human brains. J. Neurochem., 48. 510–515. https://doi.org/10.1111/j.1471-4159.1987.tb04122.x

Man, H., Bada, J. L. (1987). Dietary D-amino acids. Ann. Rev. Nutr., 7. 209–225. https://doi.org/10.1146/annurev.nu.07.070187.001233

Masters, P. E., Friedman, M. (1980). Amino acid racemization in alkali treated food proteins – chemistry, toxocology, and nutritional consequences. In Chemical Deterioration of Proteins ACS Symp. Ser., 123. 165–194., Ed. J. R. Whitaker and M. Fujimaki. Washington, DC. Am. Chem. Soc., 268. https://doi.org/10.1021/bk-1980-0123.ch008

Matsushima, O., Katayama, H., Yamada, K., Kado,Y. (1984). Occurrence of free D-alanine and alanine racemase activity in bivalve molluscs with special reference to intracellular osmoregulation. Mar. Biol. Lett., 5. 217–225.

Murray, E. D., Clarke, S. (1984). Synthetic peptide substrates for erythrocyte protein carboxyl methyltransferase. J. Biol. Chem., 259. 10722–10732. https://doi.org/10.1016/S0021-9258(18)90571-5

Neuberger, A. (1948). The metabolism of D-amino acids in mammals. Biochem. Soc. Symp., 1. 20–32.

Palla, G., Marchelli, R., Dossena, A., Casnati, G. (1989). Occurrence of D-amino acids in food. Detection by capillary gas chromatography and by reversed-phase high-performance liquid chromatography with L-phenylalaninamides as chiral selectors. J. Chromatography, 475. 45–53. https://doi.org/10.1016/S0021-9673(00)91414-6

Paquet, A., Thresher, W. C., Swaisgood, H. E., Catignani, G. L. (1985). Syntheses and digestibility determination of some epimeric tripeptides occurring in dietary proteins. Nutr. Res., 5. 891–901. https://doi.org/10.1016/S0271-5317(85)80176-7

Pasteur, L. (1852). Untersuchungen über Asparaginsäure und Aepfelsäure. Ann. Chem., 82. 324–335. https://doi.org/10.1002/jlac.18520820306

Payan, I. L., Cadilla-Perezrios, R., Fisher, G. H., Man, E. H. (1985). Analysis of problems encountered in the determination of amino acid enantiomeric ratios by gas chromatography. Anal. Biochem., 149. 484–491. https://doi.org/10.1016/0003-2697(85)90603-7

Peters, T. J. (1970). Intestinal peptides. Gut. 11. 720–725. https://doi.org/10.1136/gut.11.8.720

Preston, R. L. (1987). Occurrence of D-amino acids in higher organisms: A survey of the distribution of D-amino acids in marine invertebrates. Comp. Biochem. Physiol., 87B. 55–62. https://doi.org/10.1016/0305-0491(87)90470-6

Reaveley, D. A., Burge, R. E. (1972). Walls and membranes in bacteria. Adv. Microb. Physiol., 7. 1–81. https://doi.org/10.1016/S0065-2911(08)60076-4

Robinson, T. (1976). D-amino acids in higher plants. Life Sci., 19. 1097–1102. https://doi.org/10.1016/0024-3205(76)90244-7

Rosen-Levin, E. M., Smithson, K. W., Gray, G. M. (1980). Complementary role of surface hydrolysis and intact transport in the intestinal assimilation of di- and tripeptides. Biochim. Biophys. Acta, 629. 126–134. https://doi.org/10.1016/0304-4165(80)90271-8

Schwass, D. E., Tovar, L. R., Finely, J. W. (1983). Absorption of altered amino acids from the intestine. Eds. J. W. Finley and D. E. Schwass. Xenobiotics in Foods and Feeds. ACS Symp. Ser. No. 234. Washington, DC: Am. Chem. Soc., 187–201. https://doi.org/10.1021/bk-1983-0234.ch011

Shoji, J. I. (1978). Recent chemical studies on peptide antibiotics from the genus Bacillus. Adv. Appl. Microbiol., 24. 187–214. https://doi.org/10.1016/S0065-2164(08)70640-3

Stegnick, L. D., Bell, E. F., Filer, L. J., Ziegler, E. E., Anderson, D. W. (1986). Effect of equimolar doses of L-methionine, D-methionine and L-methionine-dl-sulfoxide on plasma and urinary amino acid levels in normal adult humans. J. Nutr., 116. 1185–1192. https://doi.org/10.1093/jn/116.7.1185

Steinberg, S., Bada, J. L. (1981). Diketopiperazine formation during investigations of amino acid racemization in dipeptides. Science, 213. 544–545. https://doi.org/10.1126/science.213.4507.544

Steinberg, S., Bada, J. L. (1983). Peptide decomposition in the neutral pH range via the formation of diketopiperazines. J. Org. Chem., 48. 2295–2298. https://doi.org/10.1021/jo00161a036

Steinberg, S., Masters, P. M., Bada, J. L. (1984). The racemization of free and peptide-bound serine and aspartic acid at 100 °C as a function of pH: implications for in vivo racemization. Bioorg. Chem., 12. 349–355. https://doi.org/10.1016/0045-2068(84)90016-6

Yamane, T., Miller, D. L., Hopfield, J. J. (1981). Discrimination between D- and L-tyrosyl transfer ribonucleic acid in peptide chain elongation. Biochemistry, 20. 7059–7063. https://doi.org/10.1021/bi00528a001

Published

1997-02-15

How to Cite

Csapó, J., Csapóné Kiss, Z., Vargáné Visi, Éva, Andrássyné Baka, G., & Terlakyné Balla, Éva. (1997). D-amino acid content of feed: A review. Acta Agraria Kaposváriensis, 1(1), 3-20. https://journal.uni-mate.hu/index.php/aak/article/view/1089

Most read articles by the same author(s)

<< < 1 2 3 4 5 6