Comparison of the Quaternary Treatment Technologies in Municipal Wastewater Purification

Szerzők

  • Csenge Nagy-Mezei Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Department of Agro-environmental Studies
  • Anikó Bezsenyi Budapest Sewage Works Pte Ltd.
  • Imre Gyarmati Budapest Sewage Works Pte Ltd.
  • Levente Kardos Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences

DOI:

https://doi.org/10.33038/jcegi.6334

Kulcsszavak:

91/271/EGK irányelv, mikroszennyezők, aktívszénszűrés, membrántechnológia, szennyvíziszap égetés

Absztrakt

The removal of micropollutants during wastewater treatment is an essential element of pollution control due to the last amendment of the Directive 91/271/EEC. Reducing and control at the source is usually the most cost-effective measure for a given substance or group of substances, but wastewater treatment plants with load above 150.000 PE (and between 10.000 and 150.000 PE based on the recieving watercourse or environmental risk assessment) have to reduce and remove the micropollutant in the future. The treatment plants have to install technologies which are optimal to eliminate the micropollutant (fourth stage or quaternary treatment technologies). The main quaternary treatment technologies are the different form of activated carbon filtration, membrane technologies (e.g. nanofiltration or reverse osmosis) and Advanced Oxidation Processes, AOP (e.g. ozone treatment). Among the options available for the removal of micropollutants, the most cost-effective solutions are activated carbon processes, ozone treatment, and their combination in different process configurations. At present, the combination of ozone treatment and activated carbon filtration is an effective technology to degrade the micropollutants, also the antibiotic resistant genes, and also remove the harmful by-products from the AOP treatment. For each wastewater treatment plant, it is necessary to individually examine which technology will be the most optimal to accomplish the new requirements.

Szerző életrajzok

  • Csenge Nagy-Mezei, Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Department of Agro-environmental Studies

    Csenge Nagy-Mezei
    PhD student, process engineer
    Hungarian University of Agriculture and Life Sciences,
    Institute of Environmental Sciences, Department of Agro-environmental Studies
    Budapest 1118, Villányi Street 29-43.

  • Anikó Bezsenyi, Budapest Sewage Works Pte Ltd.

    Anikó Bezsenyi
    Biologist engineer
    Budapest Sewage Works Pte Ltd.
    Budapest 1087, Asztalos Sándor Street 4.
    bezsenyia@fcsm.hu

  • Imre Gyarmati, Budapest Sewage Works Pte Ltd.

    Imre Gyarmati
    Team leader
    Budapest Sewage Works Pte Ltd.
    Budapest 1087, Asztalos Sándor Street 4.
    gyarmatii@fcsm.hu

  • Levente Kardos, Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences

    Levente Kardos, PhD
    Associate Professor, Head of Department
    Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Department of Agro-environmental Studies
    Budapest 1118, Villányi Street 29-43.
    kardos.levente@uni-mate.hu

Hivatkozások

AROLA, K. – KALLIOINEN, M. – REINIKAINEN, S. P. – HATAKKA, H. – MÄNTTÄRI, M. (2017). Advanced treatment of membrane concentrate with pulsed corona discharge. Separation and Purification Technology, 198, 121-127. http://dx.doi.org/10.1016/j.seppur.2017.07.011

ATALAY, S. – ERSÖZ, G. (2016). Novel catalysts in advanced oxidation of organic pollutants (pp. 23-34). New York, NY, USA: Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-28950-2

BEZSENYI, A. – SÁGI, G. – MAKÓ, M. – WOJNÁROVITS, L. – TAKÁCS, E. (2021): The effect of hydrogen peroxide on the biochemical oxygen demand (BOD) values measured during ionizing radiation treatment of wastewater. Radiation Physics and Chemistry, 189(9), 109773. http://dx.doi.org/10.1016/j.radphyschem.2021.109773

BEZSENYI, A. – NAGY-MEZEI, CS. – MAKÓ, M. (2024). A nagyhatékonyságú oxidációs eljárások (Advanced Oxidation Processes, AOP) alkalmazása során képződő hasznos és káros termékek. A Magyar Hidrológiai Társaság által rendezett XL. Országos Vándorgyűlés dolgozatai. Tanulmánykötet, ISBN 978-963-8172-45-7

CHIRWA, E. M. N. – BAMUZA-PEMU, E. E. (2010): Investigation of photocatalysis as an alternative to other advanced oxidation processes for the treatment of filter backwash water. Water Research Commission, Gezina, South Africa. Report, 1, 10. http://dx.doi.org/10.13140/RG.2.1.1368.3042

DOMBI A. – ILISZ I. (1999): Nagyhatékonyságú Oxidációs Eljárások a Környezeti Kémiában. Budapest, Magyarország. Akadémiai Kiadó, 141 o.

FALÅS, P. – JUÁREZ, R. – DELL, L. A. – FRANSSON, S. – KARLSSON, S. – CIMBRITZ, M. (2022): Microbial bromate reduction following ozonation of bromide-rich wastewater in coastal areas. Science of the Total Environment, 841, 156694. https://doi.org/10.1016/j.scitotenv.2022.156694

GARAI, GY. (2024). 4. fokozatú szennyvíztisztítás. A mikroszennyezők eltávolítása. MASZESZ Hírcsatorna 2024/1. 5-18.

GARCÍA, A. – RODRÍGUEZ, B. – GIRALDO, H. – QUINTERO, Y. – QUEZADA, R. – HASSAN, N. – ESTAY, H. (2021). Copper-modified polymeric membranes for water treatment: A comprehensive review. Membranes, 11(2), 93. https://doi.org/10.3390/membranes11020093

GARCIA-SEGURA, S. – BRILLAS, E. (2017): Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 31, 1-35. https://doi.org/10.1016/j.jphotochemrev.2017.01.005

GUERRA-RODRÍGUEZ, S. – RODRÍGUEZ, E. – SINGH, D. N. – RODRÍGUEZ-CHUECA, J. (2018). Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: a review. Water, 10(12), 1828. https://doi.org/10.3390/w10121828

HENRIQUES, I. D. – LOVE, N. G. (2007). The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins. Water Research, 41(18), 4177-4185. https://doi.org/10.1016/j.watres.2007.05.001

ILISZ, I. – ALAPI, T. – GAJDÁNÉ SCHRANTZ, K. – AMBRUS, Z. – BALÁZS, N. – SIPOS, P. – DOMBI, A. (2006): Nagyhatékonyságú oxidációs eljárások a környezeti kémiában In: Pernyeszi, Timea (szerk.) II. Kárpát-medencei Környezettudományi Konferencia Összefoglalók Pécs, Magyarország. Pécsi Tudományegyetem Természettudományi Kar (PTE TTK) (2006) 74 p. pp. 39-39., 1 p.

JAHAN, B. N. – LI, L. – PAGILLA, K. R. (2021): Fate and reduction of bromate formed in advanced water treatment ozonation systems: A critical review. Chemosphere, 266, 128964. https://doi.org/10.1016/j.chemosphere.2020.128964

KUMARI, P. – KUMAR, A. (2023): Advanced oxidation process: A remediation technique for organic and non-biodegradable pollutant. Results in Surfaces and Interfaces, 100122. https://doi.org/10.1016/j.rsurfi.2023.100122

LUO, Y. – GUO, W. – NGO, H. H. – NGHIEM, L. D. – HAI, F. I. – ZHANG, J. – LIANG, S. – WANG, X. C. (2014): A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473-474, 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065

MAGDEBURG, A. – STALTER, D. – OEHLMANN, J. (2012): Whole effluent toxicity assessment at a wastewater treatment plant upgraded with a full-scale post-ozonation using aquatic key species. Chemosphere, 88(8), 1008-1014. https://doi.org/10.1016/j.chemosphere.2012.04.017

MARGOT, J. – KIENLE, C. – MAGNET, A. – WEIL, M. – ROSSI, L. – DE ALENCASTRO, L. F. – ABEGGLENEH, C. – THONNEYCI, D. – CHÈVREF, N. – SCHÄRERG, M. – BARRY, D. A. (2013): Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? Science of the total environment, 461, 480-498. https://doi.org/10.1016/j.scitotenv.2013.05.034

MIŠÍK, M. – KNASMUELLER, S. – FERK, F. – CICHNA-MARKL, M. – GRUMMT, T. – SCHAAR, H. – KREUZINGER, N. (2011): Impact of ozonation on the genotoxic activity of tertiary treated municipal wastewater. Water research, 45(12), 3681-3691. https://doi.org/10.1016/j.watres.2011.04.015

MORRISON, C. M. – HOGARD, S. – PEARCE, R. – MOHAN, A. – PISARENKO, A. N. – DICKENSON, E. R. – VON GUNTEN, U. – WERT, E. C. (2023): Critical review on bromate formation during ozonation and control options for its minimization. Environmental Science & Technology, 57(47), 18393-18409. https://doi.org/10.1021/acs.est.3c00538

NAWROCKI, J. – ŠWIETLIK, J. – RACZYK-STANISŁAWIAK, U. – DĄBROWSKA, A. – BIŁOZOR, S. – ILECKI, W. (2003): Influence of Ozonation Conditions on Aldehyde and Carboxylic Acid Formation. Ozone Science & Engineering, 25, 53-62. https://doi.org/10.1080/713610650

OTURAN, M. A. – AARON, J. J. (2014): Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Critical Reviews in Environmental Science and Technology, 44(23), 2577-2641. https://doi.org/10.1080/10643389.2013.829765

PETALA, M. – SAMARAS, P. – ZOUBOULIS, A. – KUNGOLOS, A. – SAKELLAROPOULOS, G. P. (2008): Influence of ozonation on the in vitro mutagenic and toxic potential of secondary effluents. Water research, 42(20), 4929-4940. https://doi.org/10.1016/j.watres.2008.09.018

PETALA, M. – SAMARAS, P. – ZOUBOULIS, A. – KUNGOLOS, A. – SAKELLAROPOULOS, G. (2006): Ecotoxicological properties of wastewater treated using tertiary methods. Environmental Toxicology: An International Journal, 21(4), 417-424. https://doi.org/10.1002/tox.20188

RAYAROTH, M. P. – ARAVINDAKUMAR, C. T. – SHAH, N. S. – BOCZKAJ, G. (2022): Advanced oxidation processes (AOPs) based wastewater treatment-unexpected nitration side reactions-a serious environmental issue: A review. Chemical Engineering Journal, 430, 133002. https://doi.org/10.1016/j.cej.2021.133002

REUNGOAT, J. – MACOVA, M. – ESCHER, B. I. – CARSWELL, S. – MUELLER, J. F. – KELLER, J. (2010): Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. Water research, 44(2), 625-637. https://doi.org/10.1016/j.watres.2009.09.048

SÁGI, G. – KOVÁCS, K. – BEZSENYI, A. – CSAY, T. – TAKÁCS, E. – WOJNÁROVITS, L. (2016). Enhancing the biological degradability of sulfamethoxazole by ionizing radiation treatment in aqueous solution. Radiation Physics and Chemistry, 124, 179-183. http://dx.doi.org/10.1016/j.radphyschem.2016.02.009

SARAVANAN, A. – DEIVAYANAI, V. C. – KUMAR, P. S. – RANGASAMY, G. – HEMAVATHY, R. V. – HARSHANA, T. – GAYATHRI, N. – ALAGUMALAI, K. (2022): A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook. Chemosphere, 308, 136524. https://doi.org/10.1016/j.chemosphere.2022.136524

SHANMUGAVEL, S. P. – KUMAR, G. – GUNASEKARAN, M. (2023): Recent progress in mineralization of emerging contaminants by advanced oxidation process: A review. Environmental Pollution, 122842. http://dx.doi.org/10.1016/j.envpol.2023.122842

SORGEN, A. – JOHNSON, J. – LAMBIRTH, K. – CLINTON, S. M. – REDMOND, M. – FODOR, A. – GIBAS, C. (2021): Characterization of environmental and cultivable antibiotic-resistant microbial communities associated with wastewater treatment. Antibiotics, 10(4), 352. https://doi.org/10.3390/antibiotics10040352

SPOTHEIM-MAURIZOT, M. – MOSTAFAVI, M. – DOUKI, T. – BELLONI, J. (2008): Radiation chemistry. Edp Sciences. pp. 3-6, 79-95

STALTER, D. – MAGDEBURG, A. – WEIL, M. – KNACKER, T. – OEHLMANN, J. (2010a): Toxication or detoxication? In vivo toxicity assessment of ozonation as advanced wastewater treatment with the rainbow trout. Water research, 44(2), 439-448.

STALTER, D. – MAGDEBURG, A. – OEHLMANN, J. (2010b): Comparative toxicity assessment of ozone and activated carbon treated sewage effluents using an in vivo test battery. Water research, 44(8), 2610-2620.

TAKANASHI, H. – MAYUMI, M. – KATO, M. – HIRATA, M. – HANO, T. (2002): Removal of mutagen precursor from wastewater by activated sludge and oxidation treatment. Water science and technology, 46(11-12), 389-394.

WOJNÁROVITS, L. – WANG, J. – CHU, L. – TÓTH, T. – KOVÁCS, K. – BEZSENYI, A. – SZABÓ, L. – HOMLOK, R. – TAKÁCS, E. (2022): Matrix effect in the hydroxyl radical induced degradation of β-lactam and tetracycline type antibiotics. Radiation Physics and Chemistry, 193, 109980.

Amendment of Council Directive 91/271/EEC concerning urban waste water treatment (April 2024), Downloaded: 15th of september 2024, source: https://www.europarl.europa.eu/doceo/document/TA-9-2024-0222_EN.pdf

Government decree 50/2001. (IV. 3.) – Rules on the use and handling of wastewater and sewage sludge in agriculture, Downloaded: 15th of september 2024, source: https://net.jogtar.hu/jogszabaly?docid=a0100050.kor

Decree 28/2004. (XII. 25.), Ministry of Environment and Water – On emission limit values for water pollutants and certain rules for their application, Downloaded: 15th of september 2024, source: https://net.jogtar.hu/jogszabaly?docid=a0400028.kvv

Letöltések

Megjelent

2024-11-28

Folyóirat szám

Rovat

Cikk szövege

Hogyan kell idézni

Comparison of the Quaternary Treatment Technologies in Municipal Wastewater Purification. (2024). Journal of Central European Green Innovation, 12(1-2), 35-49. https://doi.org/10.33038/jcegi.6334